Abstract:
Online calibration of laser performance as a function of the repetition rate at which the laser is operated is disclosed. The calibration can be periodic and carried out during a scheduled during a non-exposure period. Various criteria can be used to automatically select the repetition rates that result in reliable in-spec performance. The reliable values of repetition rates are then made available to the scanner as allowed values and the laser/scanner system is then permitted to use those allowed repetition rates.
Abstract:
A wireless battery-powered daylight sensor for measuring a total light intensity in a space is operable to transmit wireless signals using a variable transmission rate that is dependent upon the total light intensity in the space. The sensor comprises a photosensitive circuit, a wireless transmitter for transmitting the wireless signals, a controller coupled to the photosensitive circuit and the wireless transmitter, and a battery for powering the photosensitive circuit, the wireless transmitter, and the controller. The photosensitive circuit is operable to generate a light intensity control signal in response to the total light intensity in the space. The controller transmits the wireless signals in response to the light intensity control signal using the variable transmission rate that is dependent upon the total light intensity in the space. The variable transmission rate may be dependent upon an amount of change of the total light intensity in the space. In addition, the variable transmission rate may be further dependent upon a rate of change of the total light intensity in the space.
Abstract:
A ceiling-embedded sensor has a shell, a microprocessor inside the shell and electrically connected to an environmental light source sensor, an infrared sensing module, and a switch module. The microprocessor determines whether to activate the infrared sensor based on a detection result of the environmental light source sensor, thereby generating and outputting a trigger signal. The switch module is disposed on a reachable surface of a wall and near the infrared sensing module, and is used to turn on and off of the microprocessor and the power. The ceiling-embedded sensor is time-saving and convenient for shortly granting passage.
Abstract:
A planar imaging sensor is provided. The planar imaging sensor includes a plurality of photo detectors divided into at least a first group of photo detectors and a second group of photo detectors, the first group of photo detectors having a first detection window and the second group of photo detectors having a second detection window, wherein the second detection window is configured to start later in time than the first detection window.
Abstract:
An image pickup apparatus capable of reducing influence of flicker while suppressing delay of start of photographing. An image pickup device and a photometric sensor pick up images of an object. A CPU obtains images by controlling driving of one of the device and the sensor to perform charge accumulation and charge readout. Further, the CPU detects a flicker frequency and a flicker phase of a flicker light source, and stores them in a memory as first information. When photographing, if the CPU determines that the first information is not valid, an ICPU obtains images by controlling driving of the other of them to perform charge accumulation and charge readout. Further, the ICPU detects the flicker frequency and the flicker phase and stores them in a memory as second information. The CPU controls exposure timing according to the second information to perform photographing.
Abstract:
The present disclosure pertains to a light sensing system configured to determine an amount of ambient light exposure experienced by a subject. The present invention wirelessly exchanges light information between different wearable devices of the same user and/or between devices of different users. Local and/or central light profile databases are built-up by the system and are shared between the devices so that light data that is typical for a location at a specific time of day and year can be used to estimate current ambient light levels for situations in which no measurement can be taken.
Abstract:
A sensor device includes: a light sensor that acquires a first light quantity measurement value that is proportional to a light quantity of a backlight and a first measurement time; a light quantity target value calculating unit that calculates a light quantity target value based on a user setting for the backlight; and a measurement time calculating unit that calculates a second measurement time for when the light sensor acquires a second light quantity measurement value a next time, based on the acquired first light quantity measurement value and the light quantity target value.
Abstract:
A multi-function controller, comprising a control element, a support element, at least a first light emitter and at least a first light receiver. A multi-function controller, comprising a control element, at least a first magnet and at least a first sensor. In some aspects, one or more occluders is provided. In some aspects, a control element is rotatable and/or tiltable, and/or the control element can be pushed or pulled, and movement of the control element is detected optically or by Hall effect sensors. In some aspects, an icon cap is not rotatable. A method comprising rotating and/or tilting a control element on a multi-function controller, and detecting a position of the control element.
Abstract:
Utilizing a quench time to deionize an ultraviolet (UV) sensor tube are described herein. One method includes monitoring firing events within a UV sensor tube, where a particular firing event initiates arming the UV sensor tube, initiating a quench time to deionize the UV sensor tube, where the quench time includes, disarming the UV sensor tube to prevent a firing event.
Abstract:
Apparatuses, methods, apparatuses and systems for standalone sensor unit are disclosed. For an embodiment, the standalone sensor unit includes a plurality of sensors and a controller. The controller is operative to detect a presence of a mobile unit, wherein detecting the presence of the mobile unit comprises the controller being operative to sense motion with a motion sensor, and sense a strobe of light, wherein the sensed motion and the sensed strobe of light occur within a predetermined time of each other, and receive a configuration setting from the mobile unit within a window of time after presence of the mobile unit has been detected.