Abstract:
A method for determining a shape correction value F for a laboratory liquid-analysis cuvette comprising a cuvette body with a circular cross-section for a photometric liquid analysis includes optically measuring an inside diameter d1 or an outside diameter d0 of the cuvette body to obtain a measured cuvette body diameter d1;d0. A shape correction value F is calculated from the measured cuvette body diameter d1;d0. The shape correction value F for the cuvette body is stored.
Abstract:
The present invention relates to a method for compensating for the breakdown of a reagent stored in an aqueous phase comprising at least one fluorescent compound and enabling the identification of particles, including the steps of: (i) measuring the fluorescence level FLUOm(t) of particles marked with said reagent; (ii) measuring the absorbance at at least one wavelength of a solution of said reagent, at a time t close to the time of said fluorescence level FLUOm(t) measurements, so as to determine at least one current optical density DO(t) of the reagent; and (iii) calculating a correction of the fluorescent level measurements using said at least one current optical density DO(t) and at least one initial optical density DO(0) of the reagent that has not been broken down. The invention also relates to a biological analysis device implementing the method.
Abstract:
Systems, methods, and apparatuses are provided for identifying an optimal spectral match and potentially display the compared spectra. A sample spectrum of a sample substance can be compared to reference spectra to identify matches, thereby determining possibilities for what the sample substance is. Correction parameter(s) may be used for the sample spectrum and/or the reference spectrum. Initial value(s) for the correction parameter(s) can be applied to the sample spectrum and/or a reference spectrum, and a similarity score can be determined. The value(s) for the correction parameter(s) can be updated and iteratively improved to provide an optimal similarity score that satisfies a convergence criterion. Data about the reference substances having optimal similarity scores that are above a threshold can be output to a user, e.g., the reference spectra can overlay the sample spectrum. A user can then make a final determination of which reference substance corresponds to the sample substance.
Abstract:
The present invention relates to a method for generating a compensation matrix during a substrate inspection. The method comprises the steps of: selecting information of N1 (N1≧2) feature objects which are randomly predetermined within a field of view (FOV) on a substrate; generating a first compensation matrix on the basis of information of the feature objects which are extracted on the substrate; comparing an offset value of each of all the feature objects with a predetermined reference value by applying all the feature objects within the FOV to the compensation matrix to count the number of the feature objects of which the offset value of the each of all the feature objects is less than the predetermined reference value; and repeatedly performing the above steps N2 times (N2≧1), and generating a second compensation matrix using information of the feature objects which have the offset value which is less than the predetermined reference value, in case the number of the counted feature objects is the maximum.
Abstract:
An image processing apparatus includes: an interface unit configured to input an image signal from an imaging apparatus that exposes a specimen dyed with a fluorescent dye to excitation light and images fluorescence by a color imaging element; and a color correction circuit configured to retain information on a percentage of each of a component of a second color and a component of a third color with respect to a component of a first color corresponding to the excitation light in the image signal, which is determined in advance based on color filter spectral characteristics of the color imaging element, and reduce each of an amount corresponding to the percentage of the component of the second color and an amount corresponding to the percentage of the component of the third color from the input image signal.
Abstract:
Methods and apparatus are provided for determining weight percent of solids in a suspension using Raman spectroscopy. The methods can be utilized to acquire Raman spectral data from the suspension and to determine weight percent of solids in a process being carried out, for example, in a vessel, without the need to remove samples for analysis. The weight percent of the solids can be determined with a desired accuracy in a relatively short time, typically 10 minutes or less. The acquired Raman spectral data may be processed by chemometric software using, for example, a partial least squares algorithm and data pretreatment to provide a predicted value of weight percent solids. In some embodiments, the invention is used to determine the weight percent of microparticles of a diketopiperazine in an aqueous solution.
Abstract:
The present invention relates to a method for compensating for the breakdown of a reagent stored in an aqueous phase comprising at least one fluorescent compound and enabling the identification of particles, including the steps of: (i) measuring the fluorescence level FLUOm(t) of particles marked with said reagent; (ii) measuring the absorbance at at least one wavelength of a solution of said reagent, at a time t close to the time of said fluorescence level FLUOm(t) measurements, so as to determine at least one current optical density DO(t) of the reagent; and (iii) calculating a correction of the fluorescent level measurements using said at least one current optical density DO(t) and at least one initial optical density DO(0) of the reagent that has not been broken down. The invention also relates to a biological analysis device implementing the method.
Abstract:
A system and method for characterizing contributions to signal noise associated with charge-coupled devices adapted for use in biological analysis. Dark current contribution, readout offset contribution, photo response non-uniformity, and spurious charge contribution can be determined by the methods of the present teachings and used for signal correction by systems of the present teachings.
Abstract:
Disclosed herein is a process and system to correct reflective distortions of an optical spectrum. In addition, a spectroscopy system that compensates for reflective distortions is disclosed.
Abstract:
The present invention reagents and methods for setting up an instruments having a multiplicity of detector channels for analyzing a multiplicity of fluorescent dyes. The present invention is particularly applicable in the field of flow cytometry.