Abstract:
A tandem accelerator and ion implanter with improved performance is disclosed. The tandem accelerator includes a plurality of input electrodes, a plurality of output electrodes and a high voltage terminal disposed therebetween. The high voltage terminal includes a stripper tube. Neutral molecules are injected into the stripper tube, which remove electrons from the incoming negative ion beam. The resulting positive ions are accelerated toward the plurality of output electrodes. To reduce the amount of undesired positive ions that exit the stripper tube, bias electrodes is disposed at the entrance and exit of the stripper tube. The bias electrodes are biased a second voltage, greater than the first voltage applied to the terminal. The bias electrodes repel slow moving positive ions, preventing them from exiting the stripper tube and contaminating the workpiece.
Abstract:
The invention provides a charged particle beam system wherein the middle section of the focused ion beam column is biased to a high negative voltage allowing the beam to move at higher potential than the final beam energy inside that section of the column. At low kV potential, the aberrations and coulomb interactions are reduced, which results in significant improvements in spot size.
Abstract:
A high-frequency acceleration type ion acceleration and transportation apparatus is a beamline after an ion beam is accelerated by a high-frequency acceleration system having an energy spread with respect to set beam energy and includes an energy analysis deflection electromagnet and a horizontal beam focusing element. In the ion acceleration and transportation apparatus, a double slit that is configured by an energy spread confining slit and an energy analysis slit is additionally disposed at a position at which energy dispersion and a beam size are to be appropriate. The position is determined based on a condition of the energy analysis deflection electromagnet and the horizontal beam focusing element, and the double slit performs energy separation and energy definition and decreases the energy spread of the ion beam by performing adjustment for a smaller energy spread while suppressing a decrease in the amount of a beam current.
Abstract:
The objective is to eliminate the effect of the hysteresis of a scanning electromagnet so that, in the raster scanning or the hybrid scanning, there is obtained a particle beam irradiation apparatus that realizes high-accuracy beam irradiation. There are provided a scanning power source that outputs the excitation current for a scanning electromagnet and an irradiation control apparatus that controls the scanning power source; the irradiation control apparatus is provided with a scanning electromagnet command value learning generator that evaluates the result of a run-through, which is a series of irradiation operations through a command value for the excitation current outputted from the scanning power source, that updates the command value for the excitation current, when the result of the evaluation does not satisfy a predetermined condition, so as to perform the run-through, and that outputs to the scanning power source the command value for the excitation current such that its evaluation result has satisfied the predetermined condition.
Abstract:
The objective is to eliminate the effect of the hysteresis of a scanning electromagnet so that, in the raster scanning or the hybrid scanning, there is obtained a particle beam irradiation apparatus that realizes high-accuracy beam irradiation. There are provided a scanning power source that outputs the excitation current for a scanning electromagnet and an irradiation control apparatus that controls the scanning power source; the irradiation control apparatus is provided with a scanning electromagnet command value learning generator that evaluates the result of a run-through, which is a series of irradiation operations through a command value for the excitation current outputted from the scanning power source, that updates the command value for the excitation current, when the result of the evaluation does not satisfy a predetermined condition, so as to perform the run-through, and that outputs to the scanning power source the command value for the excitation current such that its evaluation result has satisfied the predetermined condition.
Abstract:
An ion implantation is disclosed that includes an ionization chamber having a restricted outlet aperture and configured so that the gas or vapor in the ionization chamber is at a pressure substantially higher than the pressure within an extraction region into which the ions are to be extracted external to the ionization chamber. The vapor is ionized by direct electron impact ionization by an electron source that is in a region adjacent the outlet aperture of the ionization chamber to produce ions from the molecules of the gas or vapor to a density of at least 1010 cm−3 at the aperture while maintaining conditions that limit the transverse kinetic energy of the ions to less than about 0.7 eV. The beam is transported to a target surface and the ions of the transported ion beam are implanted into the target.
Abstract translation:公开了一种离子注入,其包括具有限制的出口孔的电离室,并且被构造成使得离子化室中的气体或蒸汽的压力显着高于离子被提取外部的提取区域内的压力 电离室。 蒸汽通过电子源直接电离而电离,该电子源位于邻近离子化室的出口孔的区域中,以产生从气体或蒸汽的分子到至少10×10 6的密度的离子, SUP> cm -3,同时保持将离子的横向动能限制在小于约0.7eV的条件。 将光束输送到目标表面,并将输送的离子束的离子注入靶中。
Abstract:
Ion implantation with high brightness, ion beam by ionizing gas or vapor, e.g. of dimers, or decaborane, by direct electron impact ionization adjacent the outlet aperture (46, 176) of the ionization chamber (80; 175)). Preferably: conditions are maintained that produce a substantial ion density and limit the transverse kinetic energy of the ions to less than 0.7 eV; width of the ionization volume adjacent the aperture is limited to width less than about three times the width of the aperture; the aperture is extremely elongated; magnetic fields are avoided or limited; low ion beam noise is maintained; conditions within the ionization chamber are maintained that prevent formation of an arc discharge. With ion beam optics, such as the batch implanter of FIG. (20), or in serial implanters, ions from the ion source are transported to a target surface and implanted; advantageously, in some cases, in conjunction with acceleration-deceleration beam lines employing cluster ion beams. Also disclosed are electron gun constructions, ribbon sources for electrons and ionization chamber configurations. Forming features of semiconductor devices, e.g. drain extensions of CMOS devices, and doping of flat panels are shown.
Abstract:
A device for implanting particles in a substrate comprises a particle source and a particle accelerator for generating an ion beam of positively charged ions. The device also comprises a substrate holder and an energy filter, which is arranged between the particle accelerator and the substrate holder. The energy filter is a microstructured membrane with a predefined structural profile for setting a dopant depth profile and/or a defect depth profile produced in the substrate by the implantation. The device also comprises at least one passive braking element for the ion beam. The at least one passive braking element is arranged between the particle accelerator and the substrate holder and is spaced apart from the energy filter.
Abstract:
An electron-beam irradiation apparatus includes: a power source device; an accelerating tube that accelerates electrons when power is supplied from the power source device, to generate an electron beam; and a pressure tank that contains the power source device and the accelerating tube. The pressure tank is configured so as to be dividable into a first division body that contains the power source device and a second division body that contains the accelerating tube. The second division body has an outlet for emitting the electron beam emitted from the accelerating tube, to the outside of the pressure tank. In addition, the power source device has a connecting part connected to the second division body.
Abstract:
Multiple electron beamlets are split from a single electron beam. The electron beam passes through an acceleration tube, a beam-limiting aperture, an anode disposed between an electron beam source and the acceleration tube, a focusing lens downstream from the beam-limiting aperture, and a micro aperture array downstream from the acceleration tube. The micro aperture array generates beamlets from the electron beam. The electron beam can be focused from a divergent illumination beam into a telecentric illumination beam.