Abstract:
A capacitor is connected between direct current voltage terminals, and inductance means is connected between one end of the capacitor and one of load terminals. In a case in which the direct current voltage exceeds a set value, voltage at both ends of the capacitor is shared by the first and second switching elements that are not electrically conductive; in a case in which the direct current voltage is below the set value, the first and second switching elements are electrically conductive on a periodic basis or as needed to output reversed-polarity voltage between load terminals; and in a case in which the first and second switching elements are turned off, voltage at both ends of the capacitor restricts voltage applied to both ends of the first and second switching elements, during a period in which the first and second feedback rectifier elements are electrically conductive.
Abstract:
In a method for extinguishing an arc in a gas discharge chamber in which power is supplied to a gas discharge chamber and in which both with a current flow in a first direction and with a current flow in a second inverse direction there is produced a gas discharge, when an arc is identified, the power supply to the gas discharge chamber is interrupted, and residual energy which is in a supply line to the gas discharge chamber and/or in the gas discharge chamber is supplied to an energy store.
Abstract:
A plasma supply device includes a full bridge circuit that is connected to a DC power supply and that has two half bridges each with two series connected switching elements. The plasma supply device further includes a primary winding of a power transformer connected to centers of the half bridges between the switching elements. The primary winding includes a tapping connectable to an alternating current center between the potentials of the DC power supply.
Abstract:
A high frequency power supply, in particular a plasma supply device, for generating an output power greater than 1 kW at a basic frequency of at least 3 MHz with at least one switch bridge, which has two series connected switching elements, wherein one of the switching elements is connected to a reference potential varying in operation, and is activated by a driver, and wherein the driver has a differential input with two signal inputs and is connected to the reference potential varying in operation.
Abstract:
A system and method for rapid atomic layer etching (ALET) including a pulsed plasma source, with a spiral coil electrode, a cooled Faraday shield, a counter electrode disposed at the top of the tube, a gas inlet and a reaction chamber including a substrate support and a boundary electrode. The method includes positioning an etchable substrate in a plasma etching chamber, forming a product layer on the surface of the substrate, removing a portion of the product layer by pulsing a plasma source, then repeating the steps of forming a product layer and removing a portion of the product layer to form an etched substrate.
Abstract:
A system and method for managing power delivered to a processing chamber is described. In one embodiment current is drawn away from the plasma processing chamber while initiating an application of power to the plasma processing chamber during an initial period of time, the amount of current being drawn away decreasing during the initial period of time so as to increase the amount of power applied to the plasma processing chamber during the initial period of time.
Abstract:
A remote control power distribution apparatus (RCPDA) includes a power distributor and a cluster tool controller (CTC). The power distributor distributes user power to provide a plurality of required types of power to each of a plurality of device modules including at least one transfer module and a plurality of process modules through a first plurality of power lines, and the user power is provided from an external source through a main power line. The CTC, connected to the power distributor and the device modules, remotely controls the required types of power provided to the device modules in real time by using power line communication (PLC).
Abstract:
A distributed power arrangement to provide local power delivery in a plasma processing system during substrate processing is provided. The distributed power arrangement includes a set of direct current (DC) power supply units. The distributed power arrangement also includes a plurality of power generators, which is configured to receive power from the set of DC power supply units. Each power generator of the plurality of power generators is coupled to a set of electrical elements, thereby enabling the each power generator of the plurality of power generators to control the local power delivery.
Abstract:
A plasma supply device generates an output power greater than 500 W at an essentially constant basic frequency greater than 3 MHz and powers a plasma process to which is supplied the generated output power, and from which reflected power is returned to the plasma supply device. The plasma supply device includes at least one inverter connected to a DC power supply, which inverter has at least one switching element, and an output network. The output network is arranged on a printed circuit board. The output network can therefore be designed low priced and accurately.
Abstract:
In a method of detecting arc discharge in a glow-discharge apparatus GD that has a high-frequency power source PS, a cutting pulse is output for time T1 to the high-frequency power source PS to stop a supply of power to the glow-discharge apparatus GD, when dVr/dtnulldVf/dt increases over a first level, where Vf and Vr are a traveling-wave voltage and a reflected-wave voltage applied to the glow-discharge apparatus GD, respectively. Arc discharge is determined to have developed in the glow-discharge apparatus, when Vr/Vf increases to a second level or a higher level within a preset time To after the supply of power to the glow-discharge apparatus is stopped.