Abstract:
A light board for a light fixture includes a first portion and a second portion. The first portion includes at least one light emitting element, and the second portion includes at least one light emitting element. A first state is defined by the second portion being coupled to the first portion and a second state is defined by the second portion being detached from the first portion. In the first state, the light emitting elements of the first portion and the second portion are configured to provide an evenly distributed light output along at least the combined length of the first portion and the second portion. In the second state, the at least one light emitting element of the first portion is configured to provide an evenly distributed light output along at least the length of the first portion.
Abstract:
The invention is directed to a method of bonding a hermetically sealed electronics package to an electrode or a flexible circuit and the resulting electronics package, that is suitable for implantation in living tissue, such as for a retinal or cortical electrode array to enable restoration of sight to certain non-sighted individuals. The hermetically sealed electronics package is directly bonded to the flex circuit or electrode by electroplating a biocompatible material, such as platinum or gold, effectively forming a studbump connection, which bonds the flex circuit to the electronics package. The resulting electronic device is biocompatible and is suitable for long-term implantation in living tissue.
Abstract:
The present invention discloses a package substrate layout design to achieve multiple substrate functions for engineering development and verification. The substrate layout contains a connection structure to connect to a plurality of power/ground domains on the package substrate. With different combination of the cutting lines on the package substrate, the invention can achieve multiple substrate functions without impacting the customer's PCB or system board design and provide cost effective and fast cycle time for engineering development phase.
Abstract:
The invention is directed to a method of bonding a hermetically sealed electronics package to an electrode or a flexible circuit and the resulting electronics package, that is suitable for implantation in living tissue, such as for a retinal or cortical electrode array to enable restoration of sight to certain non-sighted individuals. The hermetically sealed electronics package is directly bonded to the flex circuit or electrode by electroplating a biocompatible material, such as platinum or gold, effectively forming a plated rivet-shaped connection, which bonds the flex circuit to the electronics package. The resulting electronic device is biocompatible and is suitable for long-term implantation in living tissue.
Abstract:
A compact rigid-flexible board includes two flexible PCBs, two rigid substrates, a third trace layer and a fourth trace layer. The first flexible PCB includes a first depressing portion, a first exposed portion and a third depressing portion, and a separated second exposed portion. The second flexible PCB includes fourth and fifth depressing portions, and a second exposed portion. The first rigid substrate includes sixth, seventh, and eighth depressing portions. The second rigid substrate includes ninth and tenth depressing portions. The third trace layer, the sixth, first, fourth, and ninth depressing portions and the fourth trace layer are stacked in sequence. The third trace layer, the seven, second, fifth, and tenth depressing portions, and the fourth trace layer are stacked in sequence. The third trace layer and the eighth and third depressing portions are stacked in sequence.
Abstract:
A semi-finished product for the production of a printed circuit board having a plurality of alternately arranged insulating layers and conductive layers and at least one hard gold-plated edge connector is characterised by the hard gold-plated edge connector being arranged on an inner conductive layer of the semi-finished product and being fully covered by at least one group of an insulating layer and a conductive layer. The inventive Method for producing a printed circuit board having a plurality of alternately arranged insulating layers and conductive layers and at least one hard gold-plated edge connector, where an outer conductive layer is surface treated, is characterised by the steps of providing a hard gold-plated edge connector on a group of an insulating layer and a conductive layer, covering the conductive layer and the hard gold-plated edge connector with at least one group of an insulating layer and a conductive layer, surface-treating an outer conductive layer to form connector pads for wire bonding of electronic components, cutting the insulating layers and the conductive layers down to the conductive layer forming the hard gold-plated edge connector, removing the insulating layers and conductive layers from the hard gold-plated edge connector. The inventive printed circuit board comprised of a plurality of alternately arranged insulating layers and conductive layers and at least one hard gold-plated edge connector is characterised by the hard gold-plated edge connector being arranged on an inner conductive layer of the printed circuit board, and the inner conductive layer forming the hard gold-plated edge connector protruding from the plurality of insulating layers and conductive layers.
Abstract:
A method for manufacturing a rigid-flexible multilayer wiring board includes a step of forming a release layer such that the release layer covers a flexible portion forming region of a principal surface of a first thermoplastic resin sheet, a step of conducting surface modification on the principal surface of the first thermoplastic resin sheet while using the release layer as a mask, a step of laminating a second thermoplastic resin sheet such that the second thermoplastic resin sheet covers the release layer to form a laminate including the first and second thermoplastic resin sheets, a step of press-bonding the laminate, a step of forming a cut from at least either one of upper and lower surfaces of the laminate toward an outline of the release layer when seen in a plan view, and a step of removing a portion surrounded by the cut.
Abstract:
The invention is directed to a method of bonding a hermetically sealed electronics package to an electrode or a flexible circuit and the resulting electronics package, that is suitable for implantation in living tissue, such as for a retinal or cortical electrode array to enable restoration of sight to certain non-sighted individuals. The hermetically sealed electronics package is directly bonded to the flex circuit or electrode by electroplating a biocompatible material, such as platinum or gold, effectively forming a plated rivet-shaped connection, which bonds the flex circuit to the electronics package. The resulting electronic device is biocompatible and is suitable for long-term implantation in living tissue.
Abstract:
A semiconductor device includes a board, an electronic component, an evaluation component, a wiring, and a groove portion. The board includes a product area, a non-product area, and a boundary area between the product area and the non-product area. The electronic component is mounted in the product area. The evaluation component is mounted in the non-product area. The wiring electrically connects the electronic component and the evaluation component. The groove portion is formed in the boundary area of the board so as to overlap at least a part of the wiring in a plan view. The non-product area is surrounded by the groove portion and at least a portion of sides of the board.
Abstract:
A flexible sheet of light-emitting diode (LED) light emitters includes a support substrate having a thermally conductive material. The flexible sheet of LED light emitters also has an LED emitter sheet overlying the support substrate, and the LED emitter sheet including a plurality of LED light emitters. The flexible sheet of LED light emitters also has a flexible circuit sheet overlying the LED emitter sheet, and a phosphor sheet overlying the flexible circuit sheet. The phosphor sheet includes a wave-length converting material. The flexible sheet of LED light emitters also has a lens sheet overlying the phosphor sheet. The lens sheet includes a plurality of lenses.