Abstract:
A wiring substrate includes a substrate body formed of a plate-like ceramic, having a front surface, a back surface, and a height of 0.8 mm or less; a cavity opening at the front surface and having a rectangular shape as viewed in plane; and side walls having a thickness of 0.3 mm or less between a side surface of the cavity and a side surface of the substrate body. The wiring substrate further includes an electrically conductive layer having the form of a frame and formed on the front surface to surround an opening of the cavity; a ceramic surface having the form of a frame and located adjacently to the electrically conductive layer and along the outer periphery of the front surface; and a via conductor formed in the substrate body along the side surface of the cavity between a bottom surface of the cavity and the front surface.
Abstract:
An electronic device is disclosed. The electronic device includes at least an electronic element; and a circuit board having a base with at least a block, wherein the at least a block is used as a replaceable carrying portion for carrying the electronic element, and the electronic element is electrically connected to the circuit board. As such, when a defect occurs to the replaceable carrying portion, the replaceable carrying portion as well as the defective electronic element can be removed and replaced with good ones.
Abstract:
An electronic module includes a circuit board, a plurality of electronic components, a plurality of molding layers, at least one first conductive layer, at least one insulating filler, and one second conductive layer. The circuit board has a first plane and at least one grounding pad on the first plane. The electronic components are mounted on the first plane and electrically connected with the circuit board. The molding layers cover the electronic components and the first plane. The trench appears between two adjacent molding layers. The grounding pad is positioned at the bottom of the trench. The first conductive layer covers the sidewall of the trench and the grounding pad. The grounding pad electrically connected with the first conductive layer. The insulating filler is positioned in the trench. The second conductive layer covers the molding layers and the insulating filler, and electrically connects with the first conductive layer.
Abstract:
A circuit module includes a wiring substrate having a mount surface and a conductor pattern, the mount surface having first and second areas, the conductor pattern being formed along a boundary between the first and second areas on the mount surface, an outermost layer of the conductor pattern including Au or Ag; a plurality of electronic components mounted on the first and second areas; an insulating sealing layer formed along the boundary, the insulating sealing layer having a trench with a depth such that at least a part of the outermost layer of the conductor pattern is exposed, the insulating sealing layer covering the electronic components; and a conductive shield having first and second shield portions, the first shield portion covering an outer surface of the sealing layer, the second shield portion being formed at the trench, the second shield portion being electrically connected to the conductor pattern.
Abstract:
There is provided a circuit module and a method of producing the same where interlayer wirings of a circuit substrate are prevented from damaging by laser irradiation, and a shield is assuredly electrically connected to the superficial conductor of the circuit substrate. The circuit substrate includes mount components, a sealing body, and a shield. The circuit substrate is a multi-layer substrate on which interlayer wirings are formed, and includes a mount surface on which a superficial conductor is disposed. The mount components are mounted on the mount surface. The sealing body is formed on the mount surface, covers the mount component and has a trench including a first trench section reaching the superficial conductor and a second trench section not reaching the superficial conductor. The shield has an outer shield section and an inner shield section.
Abstract:
The invention relates to a method for producing a printed circuit board consisting of at least two printed circuit board regions, wherein the printed circuit board regions each comprise at least one conductive layer and/or at least one conductive component, wherein printed circuit board regions to be connected to one another, in the region of in each case at least one lateral surface directly adjoining one another, are connected to one another by a mechanical coupling. According to the invention, at least one sub-region or connection port of the conductive layer, and/or a conductive element of the component are electrically conductively coupled to each other at the lateral surface, whereby a simple and reliable lateral electrical coupling between printed circuit board regions to be connected to each other is rendered possible. The invention further relates to such a printed circuit board.
Abstract:
Printed circuit boards are provided with embedded components. The embedded components may be mounted within recesses in the surface of a printed circuit board substrate. The printed circuit board substrate may have grooves and buried channels in which wires may be mounted. Recesses may be provided with solder pads to which the wires may be soldered or attached with conductive adhesive. An integrated switch may be provided in an opening within a printed circuit board substrate. The integrated switch may have a dome switch member that is mounted within the opening. A cover member for the switch may be formed from a flexible layer that covers the dome switch member. Terminals for the integrated switch may be formed from conductive structures in an interior printed circuit board layer. Interconnects may be used to electrically connect embedded components such as switches, integrated circuits, solder pads for wires, and other devices.
Abstract:
An electronic device is disclosed. The electronic device includes at least an electronic element; and a circuit board having a base with at least a block, wherein the at least a block is used as a replaceable carrying portion for carrying the electronic element, and the electronic element is electrically connected to the circuit board. As such, when a defect occurs to the replaceable carrying portion, the replaceable carrying portion as well as the defective electronic element can be removed and replaced with good ones.
Abstract:
Printed circuit boards are provided with embedded components. The embedded components may be mounted within recesses in the surface of a printed circuit board substrate. The printed circuit board substrate may have grooves and buried channels in which wires may be mounted. Recesses may be provided with solder pads to which the wires may be soldered or attached with conductive adhesive. An integrated switch may be provided in an opening within a printed circuit board substrate. The integrated switch may have a dome switch member that is mounted within the opening. A cover member for the switch may be formed from a flexible layer that covers the dome switch member. Terminals for the integrated switch may be formed from conductive structures in an interior printed circuit board layer. Interconnects may be used to electrically connect embedded components such as switches, integrated circuits, solder pads for wires, and other devices.
Abstract:
A producing method of a wired circuit board includes the steps of preparing a two-layer base material including a metal supporting layer and an insulating layer, covering an upper surface of the insulating layer and respective side end surfaces of the insulating layer and the metal supporting layer with a photoresist, placing a photomask so as to light-shield an end portion and a portion where a conductive layer is to be formed of the upper surface, exposing to light the photoresist covering the upper surface from above the photoresist via the photomask, exposing to light the photoresist covering the respective side end surfaces from below the photoresist, forming an exposed portion of the photoresist into a pattern by removing an unexposed portion thereof to form a plating resist, and forming an end-portion conductive layer and the conductive layer.