Abstract:
A plug connector (100) includes a shell (10) and a printed circuit board (20) received in the shell. The printed circuit board includes a grounding layer (22), a conductive layer (21) disposed at a first side of the grounding layer, and an insulative layer (23) disposed therebetween. The conductive layer includes a pair of grounding traces (210), and a signal channel disposed between and isolated with the grounding traces. The signal channel includes a signal mating portion (221) disposed at a front portion. Each of the grounding traces includes a grounding mating portion (211) disposed at a front portion. Each of the grounding mating portions has a front end extending beyond the signal mating portion. The printed circuit board includes a pair of connecting traces (214). Each of the front ends of the grounding mating portions directly connects with the grounding layer by corresponding one of the connecting traces.
Abstract:
A wiring substrate includes: a substrate body made of an inorganic material; a first electrode portion, having a flat-plate shape, which penetrates through the substrate body in a thickness direction of the substrate body; a second electrode portion, having a flat-plate shape, which penetrates through the substrate body in the thickness direction and faces the first electrode portion at a prescribed interval; and a first signal electrode, which is provided between the first electrode portion and the second electrode portion and penetrates through the substrate body in the thickness direction, wherein one of the first electrode portion and the second electrode portion is a ground electrode and the other is a power electrode.
Abstract:
A circuit layout method for a printed circuit board (PCB) is provided. The method includes forming a pair of signal traces on the PCB, and disposing a ground trace between the pair of signal traces. The pair of signal traces and the ground trace are located at a same layer of the PCB, and the ground trace renders the pair of transmission traces to have predetermined impedance. An associated PCB is also provided. The PCB includes a circuit layer, and a ground layer for grounding. The circuit layer includes a pair of signal traces, and a ground grace disposed between the pair of signal traces. The circuit layer is different from the ground layer. Based on the circuit layout method and the associated PCB, an electronic apparatus not only complies with mobile high-definition link (MHL) requirements regarding impedance between signal traces but also offers reduced costs.
Abstract:
Disclosed herein are an asymmetrical multilayer substrate, an RF module, and a method for manufacturing the asymmetrical multilayer substrate. The asymmetrical multilayer substrate includes a core layer, a first pattern layer formed on one side of the core layer and including a first signal line pattern, a second pattern layer formed on the other side and including a second metal plate and a second routing line pattern, a first insulating layer thinner than the core layer formed on the second pattern layer and including a first via, and a third pattern layer formed on the first insulating layer and including a third signal line pattern, wherein an impedance transformation circuit including an impedance load and a parasitic capacitance load on the transmission line is formed for impedance matching in signal transmission between the signal line patterns formed in the upper and lower side directions of the core layer.
Abstract:
A pressure conductive sheet includes a connector body formed of a thin plate of insulation material, an elastic body deposited as one body with the connector body, pluralities of connection terminals provided with a given interval to pass through the elastic body and the connector body, and a ground plate constituting a matching circuit, the ground plate being buried by a given width in between the connector body and the elastic body. The ground plate is coupled to a ground terminal among the connection terminals and is separated from an outer circumference face of a signal terminal. The connector body, the elastic body, the connection terminals and the ground plate are combined with one another to substantially reduce an interference between signal terminals through the matching circuit formed based on capacitance of a gap between a ground face of the ground plate and the signal terminal, and to improve electrical characteristics.
Abstract:
A printed circuit board (“PCB”) includes a first pattern structure, a second pattern structure, a third pattern structure, and a fourth pattern structure. The first pattern structure includes a first ground pattern. The second pattern structure includes a first line pattern overlapping the first ground pattern and a second ground pattern electrically insulated from the first line pattern. The third pattern structure includes a third ground pattern overlapping the first line pattern and a second line pattern overlapping the second ground pattern. The fourth pattern structure includes a fourth ground pattern overlapping the second line pattern. Therefore, the PCB may decrease noise.
Abstract:
A printed circuit board includes a reference layer configured to connect to a power or a ground and a dielectric layer stacked on the reference layer. The dielectric layer includes a component surface opposing the reference layer. The component surface forms a differential pairs, a protection runner, and a power runner. The differential pairs include a substantially linear part. The protection runner is intervened between the linear part and the power runner, and is substantially parallel to the differential pairs. The length of the protection runner is approximately equal to that of the linear part. Each of the two ends of the protection runner forms a via that electrically connects the protection runner to the reference layer.
Abstract:
A mechanism for continuously referencing signals over multiple layers in laminate packages provides a continuous path for signals from one layer to another while using the ideal voltage reference for all areas of the package and still avoiding discontinuities in the voltage reference. A reference plane adjustment engine analyzes a package design and identifies an ideal top plane for all areas of the package, including areas under particular chip die(s) and areas that are not under a chip die. The reference plane adjustment engine then modifies the package design to reposition ground planes, source voltage planes, signal planes, and vias between layers to maintain a continuous voltage reference regardless of the top layer. The reference plane adjustment engine provides the resulting mixed voltage plane package design to a design analysis engine. A package fabrication system fabricates the package.
Abstract:
A power source terminal and a ground terminal for a semiconductor integrated circuit are connected to a conductor pattern through a capacitor. The conductor pattern is connected, through a filter, to a plane conductor connected to neither a ground plane nor a power source plane. Thus, a common mode noise arising from between the power source and the ground is caused to flow into the plane conductor. This reduces the common mode noise flowing in the ground and the power source of the printed wiring board, which relatively act as antennas.
Abstract:
An apparatus includes a substrate which includes an electronic component mounted on the substrate, the electronic component for processing a pair of signals, the substrate including a first wire for transmitting one of the signals, the first wire being formed on a first layer of the substrate, and a second wire for transmitting another one of the signals, the second wire being formed on a second layer of the substrate in a first region under the electronic component and being formed on a third layer in a second region of an other part of the first region.