Abstract:
A flexible electrically conductive structure includes: a first polymer layer; and an electrically conductive layer disposed on a surface of the first polymer layer, wherein the electrically conductive layer includes an electrically conductive metal and a nanocarbon material, and wherein the flexible wiring board is to be used with a bending portion provided at least one position of the electrically conductive layer.
Abstract:
The present disclosure provides an article having (a) a substrate having a first nanostructured surface that is antireflective when exposed to air and an opposing second surface; and (b) a conductor micropattern disposed on the first surface of the substrate, the conductor micropattern formed by a plurality of traces defining a plurality of open area cells. The micropattern has an open area fraction greater than 80% and a uniform distribution of trace orientation. The traces of the conductor micropattern have a specular reflectance in a direction orthogonal to and toward the first surface of the substrate of less than 50%. Each of the traces has a width from 0.5 to 10 micrometer. The articles are useful in devices such as displays, in particular, touch screen displays useful for mobile hand held devices, tablets and computers. They also find use in antennas and for EMI shields.
Abstract:
A method is used to provide an electrically conductive article. The method includes: (i) providing a continuous polymeric web of a transparent polymeric substrate; (ii) forming a first photocurable pattern on at least a first portion on a first supporting side of the continuous polymeric web using a photocurable composition comprising metal particles; (iii) exposing the photocurable pattern to form a photocured pattern on the first portion of the first supporting side; (iv) electrolessly plating the photocured pattern with an electrically-conductive metal to form an electrically-conductive metal pattern; and (v) forming a dry outermost polymeric coating over at least part but not all of the electrically-conductive pattern, the dry polymeric coating having a dry thickness of less than 5 μm, an integrated transmittance of at least 80%, and comprising a non-crosslinked thermoplastic polymer having a glass transition temperature (Tg) that is equal to or greater than 65° C.
Abstract:
A method of making a security mesh comprises forming on a conductive substrate an alumina film having through-holes in which metal, e.g., copper, through-wires are formed. First surface wires are formed on one surface of the alumina film and second surface wires are formed on the second, opposite surface of the alumina film in order to connect selected through-wires into a continuous undulating electrical circuit embedded within the alumina film. The security mesh product comprises an alumina film having a continuous undulating electrical circuit comprising copper or other conductive metal extending therethrough. A stacked security mesh comprises two or more of the mesh products being stacked one above the other.
Abstract:
To suppress occurrence of a difference in transmission time due to a difference in length between signal lines, there is provided a printed wiring board having: an insulating substrate (10); a first signal line (L31A) that constitutes differential signal lines formed on the insulating substrate (10) and includes a curved portion; a second signal line (L31B) provided along the first signal line (L31A) and side by side inside the curved portion; and a ground layer (30) formed for the first signal line (L31A) and the second signal line (L31B) via an insulating material (10). The ground layer (30) includes a first ground layer (G31A) corresponding to a first region (D1) and a second ground layer (G31B) corresponding to a second region (D2). The first region (D1) is defined based on the first signal line (L31A) and has a first predetermined width (W31A). The second region (D2) is defined based on the second signal line (L31B) and has a second predetermined width (W31B). The first ground layer (G31A) has a remaining ratio lower than a remaining ratio of the second ground layer (G31B).
Abstract:
A shield layer is selectively formed on a front surface of a base film having an insulating property to form a wiring layer on a rear surface of the base film, and a connector connection terminal and a mounting terminal are selectively provided on the wiring layer. A liquid crystal display device is configured so as to be housed in a set housing, in a state that a TFT array substrate and a control board are connected to each other via an FPC having the structure as described above. In this case, the shield layer is provided in such a manner of opposing to an inner surface of the housing, the shield layer maintains an insulating relationship with the drive circuit, and is electrically connected to a portion of the housing via the first ground wiring portion.
Abstract:
A panel structure includes a substrate, a decoration layer and a conductive component. The decoration layer is located in a first region and the rest region is a second region. The decoration layer includes a middle portion and a first edge protruding portion located between the middle portion and the second region and thinner than the middle portion. Each the conductive component extends in a first direction towards the first region from the second region and crosses the first edge protruding portion followed by extending in a second direction on the middle portion of the decoration layer, the first direction intersects the second direction, each the conductive component on the first edge protruding portion has a first width, each the conductive component on the middle portion extends in the second direction and has a second width less than the first width.
Abstract:
There is provided a flexible display having a plurality of innovations configured to allow bending of a portion or portions to reduce apparent border size and/or utilize the side surface of an assembled flexible display.
Abstract:
According to one embodiment, a semiconductor memory system includes a substrate, a plurality of elements and an adhesive portion. The substrate has a multilayer structure in which wiring patterns are formed, and has a substantially rectangle shape in a planar view. The elements are provided and arranged along the long-side direction of a surface layer side of the substrate. The adhesive portion is filled in a gap between the elements and in a gap between the elements and the substrate, where surfaces of the elements are exposed.
Abstract:
Disclosed is a transparent light emitting apparatus including a first transparent substrate, a wiring sheet including a base layer disposed on the first transparent substrate and a plurality of wiring electrodes formed on the base layer, and a plurality of light emitting diode (LED) packages electrically connected to the wiring electrodes.