Abstract:
Disclosed are an embedded circuit board and a fabrication method therefor. The embedded circuit board comprises: a circuit board body; signal transmission layers (1200), wherein the signal transmission layers are arranged on two opposite sides of the circuit board body; bonding layers, wherein the bonding layers are arranged between at least one signal transmission layer and the circuit board body and used for bonding the signal transmission layer to the circuit board body; metal bases which are embedded in the circuit board body and are electrically connected to the signal transmission layers on two opposite sides of the circuit board body; conductive parts which are arranged at the positions in the bonding layers corresponding to the metal bases, and are electrically connected to the signal transmission layer and the metal bases; and magnetic cores embedded in the circuit board body.
Abstract:
A system has a printed circuit board (PCB) comprising one or more electrical and/or electronic components and a composite material comprising highly-complex resin systems and thermally-resistant solids, the composite material adhered to the PCB and encasing the one or more electrical or electronic components.
Abstract:
A printed circuit board includes a plurality of layers including attachment layers and routing layers; and via patterns formed in the plurality of layers, each of the via patterns comprising: dual diameter first and second signal vias forming a differential signal pair, the first and second signal vias being configured to accept contact tails of signal conductors of a connector; dual diameter ground shadow vias adjacent to each of the first and second signal vias, wherein the dual diameter shadow ground vias have a reversed diameter configuration with respect to the dual diameter first and second signal vias; and ground vias configured to accept contact tails of ground conductors of the connector.
Abstract:
A circuit may be configured to reduce electrical signal degradation. The circuit may include a first trace and a second trace that may be broadside coupled between a first ground plane and a second ground plane. The first and second traces may be configured to carry first and second signals, respectively, of a differential signal. The circuit may also include a first dielectric material disposed between the first trace and the second trace. Further, the circuit may include a second dielectric material disposed between the first trace and the first ground plane and disposed between the second trace and the second ground plane. A difference between a first dielectric constant of the first dielectric material and a second dielectric constant of the second dielectric material may suppress a mode conversion of the differential signal from a differential mode to a common mode.
Abstract:
An electrical connector that includes a circuit board having a board substrate that has opposite board surfaces and a thickness measured along an orientation axis that extends between the opposite board surfaces. The circuit board has associated pairs of input and output terminals and signal traces that electrically connect the associated pairs of input and output terminals. The input and output terminals being configured to communicatively coupled to mating and cable conductors, respectively. Each associated pair of input and output terminals is electrically connected through a corresponding signal trace that has a conductive path extending along the board substrate between the corresponding input and output terminals. At least two signal traces form a broadside-coupling region in which the conductive paths of the at least two signal traces are stacked along the orientation axis and spaced apart through the thickness and extend parallel to each other for a crosstalk-reducing distance.
Abstract:
An electrical connector that includes a circuit board having a board substrate that has opposite board surfaces and a thickness measured along an orientation axis that extends between the opposite board surfaces. The circuit board has associated pairs of input and output terminals and signal traces that electrically connect the associated pairs of input and output terminals. The input and output terminals being configured to communicatively coupled to mating and cable conductors, respectively. Each associated pair of input and output terminals is electrically connected through a corresponding signal trace that has a conductive path extending along the board substrate between the corresponding input and output terminals. At least two signal traces form a broadside-coupling region in which the conductive paths of the at least two signal traces are stacked along the orientation axis and spaced apart through the thickness and extend parallel to each other for a crosstalk-reducing distance.
Abstract:
A power supply apparatus is provided. The power supply apparatus includes a flexible board including a first surface and a second surface disposed opposite to the first surface, a connecting terminal disposed on the first surface of the flexible board, and a fixing plate disposed on the second surface of the flexible board and disposed opposite to the connecting terminal.
Abstract:
An electronic device, including multiple electronic elements, a first substrate, a second substrate, and a third substrate, is provided. The first substrate includes a first device element and a first connection pad. The second substrate includes a second device element and a second connection pad. The third substrate includes a first connection line, wherein the first connection pad and the second connection pad are coupled to the first connection line, and the first substrate, the second substrate, and the electronic elements are disposed on the third substrate.
Abstract:
An apparatus includes a particle trap coupled to a first surface of an enclosure, wherein the first surface of the enclosure is opposite a top surface of a circuit board. A particle guard coupled to the top surface on a first side of the circuit board located in the enclosure, wherein the enclosure includes one or more apertures on a second surface of the enclosure where the first side of the circuit board is introduced to an external airflow.
Abstract:
A method of making a security mesh comprises forming on a conductive substrate an alumina film having through-holes in which metal, e.g., copper, through-wires are formed. First surface wires are formed on one surface of the alumina film and second surface wires are formed on the second, opposite surface of the alumina film in order to connect selected through-wires into a continuous undulating electrical circuit embedded within the alumina film. The security mesh product comprises an alumina film having a continuous undulating electrical circuit comprising copper or other conductive metal extending therethrough. A stacked security mesh comprises two or more of the mesh products being stacked one above the other.