Abstract:
A method of forming a semiconductor package is disclosed including disguising the test pads. Test pads are defined in the conductive pattern of the semiconductor package for allowing electrical test of the completed package. The test pads are formed in shapes such as letters or objects so that they are less recognizable as test pads.
Abstract:
A method of forming a semiconductor package is disclosed including disguising the test pads. Test pads are defined in the conductive pattern of the semiconductor package for allowing electrical test of the completed package. The test pads are formed in shapes such as letters or objects so that they are less recognizable as test pads.
Abstract:
Provided is a printed circuit board for a board-on-chip package prepared with a strip level of a plurality of unit substrates and including a reject marking portion for determining whether there is a defective unit substrate, wherein the reject marking portion is in each unit substrate.
Abstract:
A method of producing an electronic device includes a holding of a circuit board and a decoration sheet in a cavity of a mold, and a filling and solidifying of thermosetting resin in the cavity. A casing is molded by the solidified thermosetting resin so as to seal electronic parts and a first face of the circuit board having the electronic parts. Further, the decoration sheet is integrated with the casing by the solidified thermosetting resin. An outer surface of the casing is defined by a second face of the circuit board opposite from the first face and the decoration sheet.
Abstract:
A circuit board with identifiable information and a method for fabricating the same are proposed. At least one insulating layer within the circuit board has a non-circuit area free of a circuit layout. A plurality of openings are formed in the non-circuit area of the insulating layer. A patterned circuit layer is formed on the insulating layer. Metal identifiable information is disposed in the openings of the non-circuit area. By this arrangement, a product status of the circuit board can be traced and identified via the metal patterned information.
Abstract:
A printed article (1) comprises a substrate (2) and an image (3) printed on the substrate. The image includes line art (4) comprises conductive ink. The image includes representations of at least two items (61, 62) which overlap such that line art of a first item is joined at least one point (71) to line art of a second item.
Abstract:
In a wiring substrate in which plural wiring layers and insulating layers are alternately stacked and the adjacent wiring layers are electrically connected through a via hole formed in the insulating layer, plural holes constructing substrate management information recognizable as a character, a symbol, etc. are formed in the outside insulating layer of the insulating layers.
Abstract:
A method and apparatus include providing a printed circuit board (PCB) having at least one light permeable layer, at least one non-light permeable layer having at least one void therethrough that may be vertically aligned with the at least one light permeable layer, and a source of illumination to simultaneously illuminate through the void and the at least one light permeable layer.
Abstract:
A circuit board (205) for a valve block (120) of a solenoid valve manifold is described. Each valve block (120) contains a valve which is actuated by either one single solenoid or by two solenoids. Both sides (210, 220) of the circuit board (210) are provided with a circuit (212, 222). The first surface (210) of the circuit board (205) carries a single type valve circuit (212) for supplying one single solenoid with electrical energy. This first surface (210) can be mark e.g. with an “S”. The second surface (220) of the circuit board (205) carries a double-type valve circuit (222) for supplying two solenoids with electrical power. This second surface (220) can be marked e.g. with a “D”. The circuit board (205) is positioned in the respective valve block (120) with the first surface (210) or the second surface (220) facing upwards depending on whether a single- or a double-solenoid-valve is used in the respective valve block (120).
Abstract:
A circuit board with identifiable information and a method for fabricating the same are proposed. At least one insulating layer within the circuit board has a non-circuit area free of a circuit layout. A plurality of openings are formed in the non-circuit area of the insulating layer. A patterned circuit layer is formed on the insulating layer. Metal identifiable information is disposed in the openings of the non-circuit area. By this arrangement, a product status of the circuit board can be traced and identified via the metal patterned information.