Abstract:
Electromagnetic interference (EMI) noise filter embodiments and methods for filtering are provided herein. EMI noise filters include multiple signal exclusion enclosures. The multiple signal exclusion enclosures contain filter circuit stages. The signal exclusion enclosures can attenuate noise generated external to the enclosures and/or isolate noise currents generated by the corresponding filter circuits within the enclosures. In certain embodiments, an output of one filter circuit stage is connected to an input of the next filter circuit stage. The multiple signal exclusion enclosures can be chambers formed using conductive partitions to divide an outer signal exclusion enclosure. EMI noise filters can also include mechanisms to maintain the components of the filter circuit stages at a consistent temperature. For example, a metal base plate can distribute heat among filter components, and an insulating material can be positioned inside signal exclusion enclosures.
Abstract:
A light emitting diode assembly includes a first light emitting diode disposed on a first substrate and a second light emitting diode disposed on a second substrate that is disposed substantially adjacent to the first substrate. The second light emitting diode has a higher rate of performance degradation over time due to temperature than the first light emitting diode. A heat sink is thermally coupled to the first substrate and an electrical cooling circuit is thermally coupled to the second substrate. The electrical cooling circuit is configured to reduce a temperature of the second substrate when the electrical cooling circuit is electrically energized.
Abstract:
A light emitting diode assembly includes a first light emitting diode disposed on a first substrate and a second light emitting diode disposed on a second substrate that is disposed substantially adjacent to the first substrate. The second light emitting diode has a higher rate of performance degradation over time due to temperature than the first light emitting diode. A heat sink is thermally coupled to the first substrate and an electrical cooling circuit is thermally coupled to the second substrate. The electrical cooling circuit is configured to reduce a temperature of the second substrate when the electrical cooling circuit is electrically energized.
Abstract:
A compact, high-performance thermoelectric conversion module includes a laminate having a plurality of insulating layers, p-type thermoelectric semiconductors and n-type thermoelectric semiconductors formed by a technique for manufacturing a multilayer circuit board, particularly a technique for forming a via-conductor. Pairs of the p-type thermoelectric semiconductors and the n-type thermoelectric semiconductors are electrically connected to each other in series through p-n connection conductors to define thermoelectric conversion element pairs. The thermoelectric conversion element pairs are connected in series through, for example, series wiring conductors. The thermoelectric semiconductors each have a plurality of portions in which the peak temperatures of thermoelectric figures of merit are different from each other. These portions are distributed in the stacking direction of the laminate.
Abstract:
A circuit board with an embedded thermoelectric device with hard thermal bonds. A method of embedding a thermoelectric device in a circuit board and forming hard thermal bonds.
Abstract:
A light source module includes a light source and an thermoelectric cooler. The thermoelectric cooler includes a first base board, a second base board and a number of thermoelectric cooling units. The first base board includes a first surface and an opposing second surface. The second base board includes a top surface and a bottom surface. The light source is defined on the first surface of the first base board. The thermoelectric cooling units are disposed between the first surface of the first base board and the top surface of the second base board, and are configured for transferring heat generated from the light source from the first base board to the second base board.
Abstract:
A compact, high-performance thermoelectric conversion module includes a laminate having a plurality of insulating layers, p-type thermoelectric semiconductors and n-type thermoelectric semiconductors formed by a technique for manufacturing a multilayer circuit board, particularly a technique for forming a via-conductor. Pairs of the p-type thermoelectric semiconductors and the n-type thermoelectric semiconductors are electrically connected to each other in series through p-n connection conductors to define thermoelectric conversion element pairs. The thermoelectric conversion element pairs are connected in series through, for example, series wiring conductors. The thermoelectric semiconductors each have a plurality of portions in which the peak temperatures of thermoelectric figures of merit are different from each other. These portions are distributed in the stacking direction of the laminate.
Abstract:
A multi-layer circuit board with a thermoelectric or “Peltier” cooler and a method forming a multi-layer circuit board with a thermoelectric or “Peltier” cooler is disclosed. The circuit board includes a thermoelectric cooler which is integrally formed within the circuit board and which is effective to efficiently absorb and dissipate heat from the circuit board.
Abstract:
To provide a control board for efficiently generating electric energy in a power generating device from heat generated from an electronic device. A control board includes a board including a first heat dissipating pad; an electronic device including a second heat dissipating pad to dissipate heat; a power generating device including a Peltier device which converts heat energy generated from the electronic device into electric energy, wherein the power generating device is sandwiched between the first heat dissipating pad and the second heat dissipating pad; and a power supply circuit configured to reuse the electric energy.
Abstract:
Provided is a heater assembly for aerosol generating devices, the heater assembly including a thermally conductive element that has a cylindrical shape and includes an accommodation space for accommodating a cigarette, a flexible heater that surrounds at least a portion of an outer surface of the thermally conductive element, and an adhesion member that surrounds the flexible heater such that the flexible heater closely adheres to the thermally conductive element.