Abstract:
A lightweight radio/CD player for vehicular application and includes a case and frontal interface formed of polymer based material molded to provide details to accept audio devices and radio receivers, as well as the circuit boards required for electrical control and display. The case and frontal interface are of composite structure, including an insert molded electrically conductive wire mesh screen that has been pre-formed to contour with the molding operation. The wire mesh provides shielding and grounding of the circuit boards via exposed wire mesh pads and adjacent ground clips. The PCB architecture integrally forms a resilient beam portion adjacent an edge thereof carrying a grounding pad.
Abstract:
A lightweight radio/CD player for vehicular application is virtually “fastenerless” and includes a case and frontal interface formed of polymer based material that is molded to provide details to accept audio devices such as playback mechanisms (if desired) and radio receivers, as well as the circuit boards required for electrical control and display. The case and frontal interface are of composite structure, including an insert molded electrically conductive wire mesh screen that has been pre-formed to contour with the molding operation. The wire mesh provides EMC, RFI, BCI and ESD shielding and grounding of the circuit boards via exposed wire mesh pads and adjacent ground clips. The major components and subassemblies self-interconnect by integral guide and connection features effecting “slide lock” and “snap lock” self-interconnection. The major components and subassemblies self-ground by establishing an interference fit with exposed, resilient, embossed portions of wire mesh.
Abstract:
A lightweight radio/CD player for vehicular application is virtually “fastenerless” and includes a case and frontal interface formed of polymer based material that is molded to provide details to accept audio devices such as playback mechanisms (if desired) and radio receivers, as well as the circuit boards required for electrical control and display. The case and frontal interface are of composite structure, including an insert molded electrically conductive wire mesh screen that has been pre-formed to contour with the molding operation. The wire mesh provides EMC, RFI, BCI and ESD shielding and grounding of the circuit boards via exposed wire mesh pads and adjacent ground clips. The PCB architecture is bifurcated into a first board carrying common circuit components in a surface mount configuration suitable for high volume production, and a second board carrying application specific circuit components in a wave soldered stick mount configuration. The major components and subassemblies are self-fixturing during the final assembly process, eliminating the need for dedicated tools, fixtures and assembly equipment. The major components and subassemblies self-interconnect by integral guide and connection features effecting “slide lock” and “snap lock” self-interconnection. The radio architecture includes improved push buttons employing 4-bar living hinge linkage and front loaded decorative trim buttons.
Abstract:
A flexible printed circuit board includes a base film made of an insulating material, a power application wiring disposed on a first surface of the base film, a bypass wiring disposed on a second surface, opposite the first surface, of the base film, a first connection wiring which electrically connects the power application wiring to the bypass wiring, a second connection wiring spaced apart from the first connection wiring and which electrically connects the power application wiring to the bypass wiring, and a first cover film disposed on the first surface of the base film to cover at least a first portion of the second connection wiring. At least a first portion of the first connection wiring is exposed through the first cover film.
Abstract:
A liquid crystal display includes a display panel, a first data circuit board, a second data circuit board, and a clip. The first data circuit board has a portion of a plurality of conductors that are coupled to the display panel. The second data circuit board has a second plurality of conductors that are coupled to the display panel. A clip couples the first and the second circuit boards together. A method of assembling the liquid crystal display includes positioning a light source; coupling a clip to the first circuit board and the second circuit board that form a display panel; positioning the clip, the first circuit board, and the second circuit board below the light source; and coupling the clip to a ground plane.
Abstract:
A memory card having a main body with a memory chip module including a memory chip mounted thereon on a board is installed in a memory card main body. The memory card includes a plurality of terminal members provided in the memory card main body in line, each terminal member having a first terminal part and a second terminal part. The first terminal part of the terminal member is provided at a side of a head end of a lower surface of the memory card so as to be exposed. The second terminal part of the terminal member is connected to the memory chip module.
Abstract:
In one aspect of the present invention, subminiature fuses are soldered to a PCB via clips attached to the fuse end caps. The clips are physically attached to the PCB pads, enabling the fuse to be replaced if needed and providing thermal decoupling between the fuse and the heating sinking solder/PCB pads. The fuse and clips can also be picked and placed in one operation. In another aspect, improved fuse clips are provided that include tabs that separate the housing portions of the clips from the heating sinking solder/PCB pads. Such improved clips further enhance thermal decoupling. In a further aspect, an improved fuse is provided, in which the thermal decoupling tabs just described are provided directly with the fuse. In yet a further aspect, a thermally insultive fuse body is provided to further decouple the fuse element from its surroundings.
Abstract:
The invention relates to an electronics card (1) comprising a printed circuit board (2) and a piece of equipment (3) such as a motor or a loudspeaker fastened to said printed circuit board (2). The piece of equipment (3) is fastened to a face (4) of the printed circuit board (2) by snap-fastening in metal clips (6, 7) that project from said face (4), each clip (6, 7) having a first end (8, 9) fastened to said face (4) of the printed circuit board (2) by soldering, and a second end (11, 12) bearing resiliently on a corresponding portion of the piece of equipment (3) for holding it pressed against said face (4) of the printed circuit board (2). The invention applies in particular to electronics cards for motor vehicles.
Abstract:
A lightweight radio/CD player for vehicular application is virtually “fastenerless” and includes a case and frontal interface formed of polymer based material that is molded to provide details to accept audio devices such as playback mechanisms (if desired) and radio receivers, as well as the circuit boards required for electrical control and display. The case and frontal interface are of composite structure, including an insert molded electrically conductive wire mesh screen that has been pre-formed to contour with the molding operation. The wire mesh provides EMC, RFI, BCI and ESD shielding and grounding of the circuit boards via exposed wire mesh pads and adjacent ground clips. The major components and subassemblies self-interconnect by integral guide and connection features effecting “slide lock” and “snap lock” self-interconnection. The major components and subassemblies self-ground by establishing an interference fit with exposed, resilient, embossed portions of wire mesh.
Abstract:
A system and method for terminating a wire to an electrical device, such as a printed circuit board, is disclosed. The system includes a terminal having slots configured to receive, secure and form an electrical connection with the wire. The terminal also has compliant electrical contact fingers that form a physical and electrical connection with the electrical device, thereby electrically connecting and physically securing the wire to the device. The compliant fingers exert a normal force on the electrical device to secure the terminal and wire to the electrical device.