Abstract:
Provided is a process for the formation of nitrated compounds by the nitration of hydrocarbon compounds with dilute nitric acid. Also provided are processes for preparing industrially useful downstream derivatives of the nitrated compounds, as well as novel nitrated compounds and derivatives, and methods of using the derivatives in various applications.
Abstract:
The present invention provides a halogenated aniline represented by formula (I) (wherein each of X1 and X2 independently represents a chlorine atom, a bromine atom or an iodine atom), a method for producing the halogenated aniline, and other aspects.
Abstract:
The invention provides a process for the preparation of a compound of Formula 1, comprising coupling a carboxylic acid of Formula 2 with an aniline of Formula 3 in the presence of a coupling agent.
Abstract:
The invention relates to a process for preparing nitroalkanes by reaction of at least one alkane with at least one nitrating agent in the gas phase, wherein the nitration is carried out in a microstructured reaction zone having parallel channels having hydraulic diameters of less than 2.5 mm and a total specific internal surface area of more than 1600 m2/m3 and the alkane and the nitrating agent are conveyed under a pressure of from 1 bar to 20 bar through the reaction zone and reacted at a temperature of from 150° C. to 650° C. and the reaction products are cooled downstream of the reaction zone and discharged and the at least one nitrating agent is introduced over from two to ten introduction points along the reaction zone.
Abstract translation:本发明涉及通过在气相中至少一种烷烃与至少一种硝化剂反应来制备硝基烷烃的方法,其中硝化在具有水力直径小于2.5mm的平行通道的微结构反应区中进行,以及 超过1600m 2 / m 3的总比表面积和烷烃和硝化剂在1巴-20巴的压力下通过反应区输送,并在150℃至650℃的温度下反应 并且反应产物在反应区的下游冷却并排出,并且将至少一种硝化剂沿着反应区引入二至十个引入点。
Abstract:
The invention provides a process for the preparation of a compound of Formula 1, comprising coupling a carboxylic acid of Formula 2 with an aniline of Formula 3 in the presence of a coupling agent.
Abstract:
Proposed is a separation method in a toluene to dinitrotoluene process, wherein said method with a first process step comprising feeding a toluene comprising first stream (1) and a nitric acid comprising second stream (2) into a first reactor (R1), reacting of the toluene comprising first stream (1) and the nitric acid comprising second stream (2) within the first reactor (R1) to a first reaction mixture (3), said first reaction mixture (3) comprising a first liquid/liquid mixed phase of an acid phase and an organic phase comprising mononitrotoluene, feeding the first reaction mixture (3) into a first separation device (S1), separating the first reaction mixture (3) within the first separation device (S1) into a first forward stream (4) having a flow direction to a second process step and a first backward stream (5) having a flow direction back to the first reactor (R1), said method having a second process step comprising feeding the first forward stream (4) into a second reactor (R2), feeding a nitric acid comprising third stream (6) and a sulfuric acid comprising fourth stream (7) into the second reactor (R2), reacting of the first forward stream (4), the nitric acid comprising third stream (6) and the sulfuric acid comprising fourth stream (7) within the second reactor (R2) to a second reaction mixture (8), said second reaction mixture (8) comprising a second liquid/liquid mixed acid phase and an organic phase comprising mononitrotoluene and dinitrotoluene, feeding the second reaction mixture (8) into a second separation device (S2), separating the second reaction mixture (8) within the second separation device (S2) into a second forward stream (9) having a flow direction to a process output and a second backward stream (10) having a flow direction back to the first reactor (R1), wherein fine separating of at least one of the streams (4, 5, 9, 10) after the first separation step (S1) and/or the second separation step (S2) in a coalescer is carried out.
Abstract:
A process for the preparation of mononitroaromatics and dinitroaromatics, in which a hydrate melt of at least one metal nitrate M(NO3)3 is used as a nitrating medium, it being possible for M to be the metals Fe, Cr, Y, La, Ce, Al, Bi and In, and the metal nitrate having a water content of from 4 to 9 mol of water per M(NO3)3, leads to simplifications of the process and improved yields.
Abstract:
Porous microcomposites have been prepared from perfluorinated ion-exchange polymer and metal oxides such as silica using the sol-gel process. Such microcomposites possess high surface area and exhibit extremely high catalytic activity.
Abstract:
The invention concerns novel nitroaromatic compounds of general formula (I′) wherein: R, R′1, R2, Z and n are as defined in claim 1. The invention also concerns a method for preparing nitroaromatic compounds nitrated in position 4. The invention further concerns the use of said compounds for preparing heterocyclic benzofuran or benzothiophene derivatives nitrated in position 5. The invention concerns particularly the preparation of 2-alkyl-5-nitrobezofuran.
Abstract:
A process for the nitration of an aromatic or heteroaromatic compound with a nitrating agent comprising nitric acid or a mixture of nitric and sulphuric acids, characterised in that nitration is performed in a solvent comprising at least 50% v/v of a C.sub.1 -C.sub.6 alkyl ester of a C.sub.1 -C.sub.4 carboxylic acid. The process is of particular use for the nitration of diphenyl ethers to give compounds which are useful as herbicides or as intermediates in the synthesis of herbicides.