Abstract:
A high-temperature-resistant composite body is formed by joining over an area of a first, nonmetallic section via a bonding solder layer to a second, metallic section composed of Mo, an Mo-based alloy, W or a W-based alloy. A first arrangement composed of the first section, a first Zr solder and an intermediate layer is firstly soldered together in a first soldering step. A second arrangement of the resulting partial composite body, a second solder adjoining the intermediate layer and the second section is subsequently soldered together in a second soldering step. The intermediate layer at least 90 atom % of at least one of the elements Ta, Nb, W. The second solder is formed by precisely one material selected from Ti, Ti-based solder combination, V-based solder combination, Zr or Zr-based solder combination and it melts at a lower temperature than the first Zr solder in the second arrangement.
Abstract:
A method for enhancing the conductivity of transparent conductive electrodes on display substrates by providing patterned auxiliary metallic layers adjacent to the transparent conductive material. The method of the present invention eliminates the need for aligning the auxiliary metal layers with preexisting transparent conductive electrodes by providing for simultaneous patterning of the auxiliary metal layers and formation of the independently addressable electrodes.
Abstract:
A field emission device wherein two collecting electrodes are provided to selectively collect electrons that are emitted from an emitting electrode as induced by a gate electrode.
Abstract:
Secondary electrons emitted from an electron-collecting electrode of a vacuum tube degrade the performance. Emission of high-speed secondaries is reduced by coating the electron-collecting surface with a material of low atomic number. Emission of low-speed secondaries is a less predictable function of the surface material and structure. The invention comprises a coating of aluminum boride or similar substance, which has low secondary emission and is also easy to outgas.
Abstract:
Heat distortion preventive means in the form of expansion openings are provided in the leading edge of anode fins for increased stability during operation and longer life expectancy.
Abstract:
The present invention relates to a method for manufacturing a plurality of nanostructures comprising the steps of providing a plurality of protruding base structures (104) arranged on a surface of a first substrate (102), providing a seed layer mixture, comprising a solvent/dispersant and a seed material, in contact with the protruding base structures, providing a second substrate arranged in parallel with the first substrate adjacent to the protruding base structures, thereby enclosing a majority of the seed layer mixture between the first and second substrates, evaporating the solvent, thereby forming a seed layer (110) comprising the seed material on the protruding base structures, removing the second substrate, providing a growth mixture, comprising a growth agent, in contact with the seed layer, and controlling the temperature of the growth mixture so that nanostructures (114) are formed on the seed layer via chemical reaction in presence of the growth agent.
Abstract:
A luminescent polymer comprising a triarylene repeat unit which comprises a triarylene of general formula (I) which is substituted or unsubstituted and an arylene repeat unit -[-Ar-]- that is different from the triarylene repeat unit wherein X, Y, and Z are each independently O, S, CR2, SiR2 or NR and each R is independently alkyl, aryl or H.
Abstract:
A phosphor comprises: (a) at least a first metal selected from the group consisting of yttrium and elements of lanthanide series other than europium; (b) at least a second metal selected from the group consisting of aluminum, gallium, indium, and scandium; (c) boron; and (d) europium. The phosphor is used in light source that comprises a UV radiation source to convert UV radiation to visible light.
Abstract:
A fluorescent lamp comprising a bulb, a fluorescent material coated on an internal surface of the bulb, a stem, a discharge chamber filled with gas and mercury, a thermal cathode filament coated with electron emitting material, lead wires passing air-tight through the stem and supporting the thermal cathode filament and an anode, where the anode is substantially rectangular with a thickness 1/16.about.3/16 of the longitudinal length of the thermal cathode filament and is substantially parallel to cathode filament in a cross-sectional view along an axis Z. The thermal cathode filament and the rectangular anode are arranged such that either the thermal cathode filament or the rectangular anode is in a rotated position relative to the other on a parallel flat surface within an angle range of 30-60 degrees. In this composition, the smaller discharge spot is obtained to improve thermal electron emission efficiency and efficiency of the fluorescent lamp. Additionally, the luminance of the fluorescent lamp does not greatly decrease and is sufficient for use even after the discharge spot passes the center point of the thermal cathode filament.