Abstract:
A plasma source for a substrate is provided. The plasma source may include a source electrode and an impedance box. The source electrode receives a source Radio Frequency (RF) from the external and generates plasma based on capacitive coupling within a vacuum chamber. The impedance box connects at one end to an outer circumference surface of the source electrode, and is grounded at the other end to the vacuum chamber, and controls an electric current flowing from the source electrode to the vacuum chamber by the source RF.
Abstract:
A plasma source includes a ring plasma chamber, a primary winding around an exterior of the ring plasma chamber, multiple ferrites, wherein the ring plasma chamber passes through each of the ferrites and multiple plasma chamber outlets coupling the plasma chamber to a process chamber. Each one of the plasma chamber outlets having a respective plasma restriction. A system and method for generating a plasma are also described.
Abstract:
An arrangement of a cathode electrode for plasma CVD forms a radio frequency capacity coupled plasma by applying radio frequency radiation, in which the cathode electrode is disposed so as to face an anode electrode. The facing surface which faces the anode electrode is formed to have a concavo-convex shape comprising concaves constituted by a bottom surface and convexes constituted by a plurality of protrusions protruding toward the anode electrode from the bottom surface constituting the concaves. At least one of the protrusions forming the convexes has at least one reactive gas ejection nozzle on a side surface, which is capable of ejecting a reactive gas. An ejection direction of the reactive gas from the reactive gas ejection nozzle is substantially parallel to the bottom surface constituting the concaves. The optimization of the cathode electrode allows generation of dense plasma.
Abstract:
An apparatus for producing light includes a chamber and an ignition source that ionizes a gas within the chamber. The apparatus also includes at least one laser that provides energy to the ionized gas within the chamber to produce a high brightness light. The laser can provide a substantially continuous amount of energy to the ionized gas to generate a substantially continuous high brightness light.
Abstract:
A sulfur lamp, is provided, including a power supply that supplies electrical power, a transparent bulb having a space inside that contains sulfur and a plurality of electrodes. Additionally, a portion of each electrode may be inserted into the space and an end of each electrode may be connected to the power supply such that the sulfur is excited by an electric discharge thereby emitting light. A portion of the electrode inserted into the space may be coated with a protective layer to prevent a chemical reaction of between the electrode and the sulfur. Further, the changing of the sulfur (contained in the space of the bulb) into a plasma phase may be accomplished by utilizing the electrodes (not microwaves). Therefore, a need to utilize a magnetron (which is low in energy transfer rate) may be eliminated, thereby increasing a system efficacy and saving a cost of replacing the magnetron.
Abstract:
A surface discharge device performing functions of a trigger and electron beam generator includes a cylinder shaped member formed from a dielectric material with dielectric constant ε>100, in which a central opening is formed having a conical or cylindrical shape. An internal electrode is electrically coupled to the internal surface of the cylinder shaped member. An external electrode covers the external surface of the cylinder shaped member. A triggering pulse is applied between the external and internal electrodes to generate emission of electrons in the central opening and formation of the conducting plasma to ignite the device and serve as a source of electrons for generating an electron beam. The conducting plasma charges a capacitor formed by the cylinder shaped dielectric member and the external electrode. The cylinder shaped member is positioned in a hollow cathode having a central bore hole in the bottom. An anode is positioned remotely from the cathode and an electric field exists dynamically in space between the cathode and anode for at least a portion of the duration of the triggering pulse.
Abstract:
A compact fluorescent lamp comprises a fluorescent tube having a helical portion on at least a part thereof and turned down in the middle, a pair of tube ends thereof each provided with a discharge electrode, the pair of tube ends juxtaposing with each other in the same direction, a holder for holding the tube ends so as that the fluorescent tube is supported at the one side thereof, a lighting device for supplying a high-frequency power to the fluorescent tube, the lighting device comprising a circuit board facing the other side of the holder and circuit elements mounted on the circuit board, a cover for accommodating the lighting device the cover opening at both ends and holding the holder at the one opening end, and a cap fixed to the other opening end of the cover for supplying a commercial power to the lighting device by being mounted to a socket of luminaire, wherein a thin tube is protruded from at least one of the tube ends of the fluorescent tube in the cover, and the thin tube is communicated with the fluorescent tube.
Abstract:
An electrodeless fluorescent lamp (10) having a burner (20), a ballast housing (30) containing a ballast (40) and a screw base (50) for connection to a power supply. A reentrant cavity (60) is formed in the burner (20) and an amalgam receptacle (70) containing amalgam (75) is formed as a part of the reentrant portion and in communication with the burner (20). A housing cap (80), formed of a suitable plastic, connects the burner (20) to the ballast housing (30) and a suitable adhesive (31) fixes the burner to the housing cap (80). An EMI cup (90) is formed as an insert to fit into the ballast housing (30), which also is formed of a suitable plastic, and has a bottom portion (100) and an EMI cap (110) with an aperture (120) therein closing an upper portion (140). The EMI cup (90) and the EMI cap (110) are preferably formed from 0.5 mm brass. The amalgam receptacle (70) extends through the aperture (120) and into the cup (90). For a fixed amalgam position, changing the aperture size allows adjustment of the amalgam tip temperature, and thus, allows control of the system lumen output, efficacy, CCT and CRI, all of which are dependent on the amalgam temperature.
Abstract:
Electrons are arranged so they circulate along a spiral path in a vacuum. The path has a hollow symmetrical shape which is defined by a surface of a toroid. The shape is controllable by a magnetic field and the electrons can be contained within the shape. A containing force can be created by external electromagnetic fields, ions within the vacuum, or by interactions between the orbiting electrons themselves. The contained electrons store energy for later retrieval.