Abstract:
An LED classification device classifies LEDs, the LEDs each including a combination of an LED element that emits a primary light and a phosphor that, upon excitation by the primary light, emits a secondary light having a longer wavelength than the primary light, the LEDs each emitting a combined light of the primary light and the secondary light, those ones of the LEDs whose primary lights having their chromaticities falling within a predetermined chromaticity range being classified as LEDs for use in a backlight of a liquid crystal display apparatus. The LED classification device calculates, for all of the LEDs to be classified, correction values for the chromaticities as obtained on the assumption that the primary lights have traveled through a color filter of the liquid crystal display apparatus, and correct chromaticities by subtracting the correction values from chromaticities obtained for all of the LEDs to be classified, respectively.
Abstract:
A display light measurement method which can measure color representation of a various types of display devices regardless of the specification of the display device; a computer program, and a measurement system. A measurement device connected to an optical sensor can communicate with a target display device (information terminal) to be measured. The measurement device transmits content including a color patch to the display device to cause the display device to display the content and performs a measurement on the displayed content using the optical sensor. To perform measurements on many color patches, the measurement device repeats the following: when a measurement on one color patch being displayed is complete, the measurement device transmits content including another color patch to the display device to cause the display device to display the content and performs a measurement on the content being displayed.
Abstract:
The invention relates to a white balance adjusting method, which includes steps of: obtaining the maximum and minimum spectral tristimulus values Xmax, Ymax, Zmax and X0, Y0, Z0 in a chromaticity coordinate system as well as spectral tristimulus values of each gray level for red, green and blue; converting the maximum spectral tristimulus values into maximum color stimulus values; converting the maximum color stimulus values into a hue and a chroma; computing intermediate spectral stimulus values Y1 to Ymax-1 of Y; computing intermediate spectral stimulus values of X, Z; determining spectral tristimulus values of red, green, blue colors of a white field for each gray level and corresponding gray level numbers. The white balance adjusting method of this invention executes the white field adjustment by fixing the hue and the chroma of a white point for all gray levels based on brightness variance matching gray level index variance.
Abstract:
Systems and methods for lighting calibration are disclosed. A brightness level for a first color, a brightness level for a second color, and a brightness level for a third color are detected for at least a portion of the plurality of light sources. A desired brightness value for the first color is determined based on the detected brightness level for the first color. A desired brightness value for the second color is determined based on the detected brightness level for the second color. A desired brightness value for the third color is determined based on the detected brightness level for the third color. One or more currents are adjusted at the plurality of light sources to set the plurality of light sources to the desired brightness value for the first color, the desired brightness value for the second color, and the desired brightness value for the third color.
Abstract:
A measurement position determination apparatus includes a creation unit, a measurement unit, and a determination unit. The creation unit creates display image data for displaying a reference image and a comparison image on a display screen. The reference image includes one achromatic image, and the comparison image is formed by arranging two or more images including a chromatic image. The measurement unit measures the reference image and the comparison image in a sub-area on the display screen. The reference image and the comparison image are displayed on the display screen in accordance with the display image data. The determination unit determines a measurement position of the measurement unit on the display screen in accordance with measurement results obtained by measurement of the reference image and the comparison image using the measurement unit.
Abstract:
An optical test equipment/method for display testing that features parallel testing/sensing configuration that covers spectrum and colorimetric quantities with spatial resolution is disclosed. In one embodiment, a spectra-camera, which is a hybrid system consisting of both a single-point spectrometer and an imaging colorimeter, can be configured for concurrent display artifact and parametric testing. An aperture mirror with a hole in the middle splits an image of a test display into two parts. One part of the image passes through the hole and is directed to the spectrometer for display parametric testing. The rest of the image is reflected off the aperture mirror for concurrent display artifact testing with the colorimeter. In another embodiment, a beam splitter can be used instead of an aperture mirror. In yet another embodiment, the single-point high accuracy spectrometer can be used to calibrate the low accuracy imaging colorimeter.
Abstract:
Color calibration of color image rendering devices, such as large color displays, which operate by either projection or emission of images, utilize internal color measurement instrument or external color measurement modules locatable on a wall or speaker. A dual use camera is provided for a portable or laptop computer, or a cellular phone, handset, personal digital assistant or other handheld device with a digital camera, in which one of the camera or a display is movable with respect to the other to enable the camera in a first mode to capture images of the display for enabling calibration of the display, and in a second mode for capturing image other than of the display. The displays may represent rendering devices for enabling virtual proofing in a network, or may be part of stand-alone systems and apparatuses for color calibration. Improved calibration is also provided for sensing and correcting for non-uniformities of rendering devices, such as color displays, printer, presses, or other color image rendering device.
Abstract:
Improved methods are provided for calibrating color on a color display coupled to a computer, which are useful for obtaining calibrated data in a virtual proof network for enabling different color devices to render consistent color. Methods involve user interactions with screens on the display to set color display parameters. An apparatus is also provided for calibrating a sensor which may be used for measuring color of a display in one or more of these methods.
Abstract:
The invention relates to an optical detection system for detecting the optical distribution of a display device having a light source and a predetermined display range divided into multiple virtual detection regions. The system includes a power module for supplying power to the light source, a monochromatic module for detecting luminous intensity of the light source at various wavelengths within a selected virtual detection region, multiple optical sensor modules, each corresponding to one of the virtual detection regions, a memory module saving wavelength correction parameters of the optical sensor modules, and a processor module receiving the wavelength distribution within the selected virtual detection region of the display device, and for calculating and compensating for expected detection values of the respective optical sensor modules based on the wavelength correction parameters and actual detection values of the optical sensor modules.
Abstract:
A method for matching colors including comparing the appearance of a first white color associated with a first color imaging system and a second white color associated with a second color imaging system, wherein the tristimulus values of the first and second white color are similar; determining a fixed correction to the tristimulus values of the second white color to achieve a visual match to the first white color; measuring a first set of spectral values for a first color associated with the first color imaging system; determining a first set of tristimulus values from the first set of spectral values; measuring a second set of spectral values for a second color associated with the second color imaging system; determining a second set of tristimulus values from the second set of spectral values; applying a correction to the tristimulus values of the second color; determining a difference between the tristimulus value of the first color and the corrected tristimulus value of the second color; and adjusting the second color to reduce the difference.