Abstract:
A processor implemented prosthodontia system employs digital imaging of a restoration site and surrounding areas of an oral cavity and digital sampling of calorimetric values of tooth surfaces. The processor selects digital image data representative of a tooth surface configuration corresponding to the tooth number of the tooth to be restored and generates a three dimensional image of the restoration, with colorimetric values. Data comprising the shape and calorimetric values of the restoration is transmitted to a fabrication station for processor controlled fabrication through implementation of, for example, a three dimensional jet printing system employing particulate porcelain, polymeric dental composite, etc., and a binder, solvent or reactant and which builds a preform in successive layers of incremental cross sectional heighths. The shaped and colored preform is then hardened to produce a restoration having the specified size, shape and calorimetric values.
Abstract:
An instrument and related process for measuring color, shade, gloss, shape and/or translucence of a tooth. First, the instrument uses searchlight illumination to illuminate a tooth with constant irradiance. Second, the instrument uses calorimetric imaging to collect time-separated frames of different wavelengths of light reflected from a tooth and to combine those frames into a color image. Third, the instrument includes a sanitary shield to establish a reference color and a predetermined distance to a target tooth. Fourth, the instrument provides line-of-sight viewing so an operator may simultaneously view a display of the image on the instrument and the object being measured. Fifth, the instrument is impervious to pollutants because it incorporates a sealed measurement window. Sixth, optical measurements of a tooth taken by a dentist are compared to optical measurements of a prosthetic restoration for that tooth to confirm satisfactory matching of optical characteristics of the tooth and restoration.
Abstract:
An interactive dental restoration method and system for use between a dentist and a dental restoration laboratory. The method includes identifying a dental restoration need in a patient; designing a preliminary treatment plan that includes design criteria for preparation of a dental prosthesis to be placed in the patient to satisfy the dental restoration need; transmitting the preliminary treatment plan via a communications network to a dental restoration laboratory; and communicating a final treatment plan, including modifications to the preliminary treatment plan where necessary, to the dentist. The system includes a computer-based dental restoration system of a network server having a database storing information about materials, procedures and preparations concerning dental restoration prostheses; a communications network providing access to the network server; and one or more computers at a dental office accessing information stored at the database over the communications network and displaying the information in a humanly readable format. Preferably, the communications network is the Internet, and the information stored in the database comprises preparation diagrams, reduction dimensions, margin design and burs for specific dental restoration prostheses. Typically, the final treatment plan includes information about materials for preparing a dental prosthesis that satisfies the design criteria, and the dental prosthesis is then prepared for placement in the patient. This enables optimization of the dental restoration with significant savings in time and effort for the dentist, dental technician and the patient.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of an object are disclosed. Perimeter receiver fiber optics are spaced apart from a source fiber optic and receive light from the surface of the object being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a data base.
Abstract:
An instrument and related process for measuring color, shade, gloss, shape and/or translucence of a tooth. First, the instrument uses searchlight illumination to illuminate a tooth with constant irradiance. Second, the instrument uses colorimetric imaging to collect time-separated frames of different wavelengths of light reflected from a tooth and to combine those frames into a color image. Third, the instrument includes a sanitary shield to establish a reference color and a predetermined distance to a target tooth. Fourth, the instrument provides line-of-sight viewing so an operator may simultaneously view a display of the image on the instrument and the object being measured. Fifth, the instrument is impervious to pollutants because it incorporates a sealed measurement window. Sixth, optical measurements of a tooth taken by a dentist are compared to optical measurements of a prosthetic restoration for that tooth to confirm satisfactory matching of optical characteristics of the tooth and restoration.
Abstract:
A light analyzer with a first light source configured and disposed for irradiating with a first light an object disposed at an object location. A second light source is configured and disposed for irradiating the object with a second light that is preferably polarized along a first axis. A light receiving element is configured and disposed for receiving the first and second light reflected from the object and comprising a sensing device that is configured for sensing and producing an image corresponding to the reflected light. The light receiving element preferably comprises a polarizing filter configured for polarizing the reflected second light along a second axis at an angle to the first axis for reducing glare and reflection.
Abstract:
Color/optical characteristics measuring systems and methods are disclosed. Perimeter receiver fiber optics/elements are spaced apart from a central source fiber optic/element and received light reflected from the surface of the object is measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention.
Abstract:
A patient's dental prosthesis (e.g. a prosthesis tooth, crown, veneer, or bridge) is made by acquiring an image of the patient's teeth that contain black and white normalization references. These references are black and white porcelain, for example, that allow software of the invention to determine absolute black and absolute white within the color image. The acquired color image is then normalized in accordance with the normalization references, which corrects the image for variations in lighting conditions and image source. The normalized image is then standardized by matching the pixels of the normalized image to selected shade standards. The dental prosthesis can then be manufactured by a lab technician by referring to the standardized image. The tooth shade analysis and matching system is also applicable to direct restorations of natural teeth, such as repair of chipped or broken teeth. Methods of whitening teeth are also disclosed.
Abstract:
Methods, apparatuses and systems for tooth shade analysis and matching are disclosed. A method embodiment according to the invention includes acquiring at least one image, the image including one or more teeth of a patient and normalization references, normalizing the at least one image in accordance with the normalization references, determining the color of the teeth as composed of colors from one or more selected shade standards, communicating the standardized color information to a dental laboratory, manufacturing a dental prosthesis based on the standardized color information and installing the dental prosthetic. Normalization is performed to correct patient images for variations in lighting conditions and image source. Normalization references include a black reference, a white reference and at least one color reference. The normalized image is standardized by matching the pixels of the normalized image to selected shade standards. Selected shade standards may include incisal tooth shade standards. The standardized color image and/or analysis may be communicated to a dental laboratory according to aspects of the invention. The dental prosthesis can then be manufactured by a lab technician by referring to the standardized image. Color models according to the invention may include RGB, HSI and other models for representing color images. The methods, apparatuses and systems for tooth shade analysis and matching are also applicable to direct restorations of natural teeth, such as repair of chipped or broken teeth.
Abstract:
The invention relates to a method for determining a patient's tooth shade that includes the steps of electronically imaging a patient's tooth to obtain an image which includes color information representative of tooth color; determining the patient's tooth color from the color information of the image; and displaying the determined tooth color to identify one or more tooth shades having a combined color corresponding to the determined tooth color. Preferably, the displayed data includes RGB chromaticities of the color image, and the patient's tooth color is determined by averaging the color information at selected locations of the image which correspond to different spatial locations of the patient's tooth. If desired, the color information of the patient's tooth can be electronically stored for use at a later time.