Abstract:
A hand-held optical scanner is described. The hand-held optical scanner has an image sensor, as well as a scan window through which image light is directed toward the image sensor.
Abstract:
A light measurement method is provided comprising: determining one or more correction factors for at least one image capture device, using the image capture device to receive light output from at least one source of illumination, obtaining an output from the image capture device which corresponds to the light output of the source of illumination, and applying the or each correction factor to the output of the image capture device to obtain one or more substantially absolute measure of the light output of the source of illumination. A light measurement apparatus is also provided to carry out the light measurement method.
Abstract:
Method and system are disclosed for de-embedding optical component characteristics from optical device measurements. In particular, the invention uses frequency domain averaging of the RBS on both sides of an optical component to determine one or more of its optical characteristics. Where the RBS has a slope (e.g., as in the case of a lossy fiber), a frequency domain least square fit can be used to determine the optical component characteristics. In addition, the invention uses a reference DUT to correct for variations in the frequency response of the photoreceiver. A reference interferometer is used in the invention to correct for sweep non-linearity of the TLS. The optical component characteristics are then de-embedded from optical device measurements to provide a more precise analysis of the optical device.
Abstract:
The invention describes systems and methods for calibrating a low-level light imaging system. Techniques described herein employ a light calibration device that is placed within a low level light imaging box to calibrate the system and its constituent components such as the camera and processing system. The calibration device comprises an array of low-power light supplies each having a known emission. By taking an image of each low-power light supply, and comparing the processed result with the known emission, the accuracy of the imaging system and its absolute imaging characteristics may be assessed and verified.
Abstract:
The present invention relates to a phantom device that simplifies usage and testing of a low intensity light imaging system. The phantom device includes a body and a light source internal to the body. The body comprises an optically selective material designed to at least partially resemble the optical behavior of mammalian tissue. Imaging the light source or phantom device may incorporate known properties of the optically selective material. Testing methods described herein assess the performance of a low-level light imaging system (such as the software) by processing light output by the phantom device and comparing the output against known results. The assessment builds a digital representation of the light source or test device and compares one or more components of the digital representation against one or more known properties for the light source or the test device.
Abstract:
A method and apparatus for genomic or proteomic research to visualize fluorescent labeled DNA, RNA or protein samples that have been separated for documentation and analysis. The apparatus includes a novel radiation source for uniformly irradiating the samples which comprises a grid constructed from a continuous, serpentine shaped ultraviolet light producing tube that is strategically formed to provide a multiplicity of side-by-side, immediately adjacent irradiating segments. In one form of the invention the apparatus also includes a first conversion plate that is carried by the housing at a location intermediate the radiation source and the sample supporting platform for converting the radiation emitted from the source to radiation at a second wavelength.
Abstract:
A cooling fan for air-cooling a lamp housing is installed near to the lamp housing in which the lamp is accommodated. This cooling fan is adapted to suck out heated air surrounding the lamp housing directly to the outside of an apparatus. A time taken by the temperature of the lamp housing, which rises due to heat generated by the lamp, to reach a stable temperature is preliminarily set in a fan control portion. The fan control portion controls the cooling fan in such a way as to stop until this time elapses. Alternatively, the fan control portion initially operates the cooling fan at a rotating speed that is lower than a normal operation rotating speed, and thereafter causes the fan to start rotating at the normal operation rotating speed.
Abstract:
The present invention provides a system and method for the diffusion of illumination from discrete light sources such that the illumination is blended and directed in one or more desired directions. The illumination system comprises a substrate having a plurality of light-emitting elements thereon which are arranged in an array, wherein these light-emitting elements produce illumination at one or more wavelengths. Proximate to the light-emitting elements is a diffuser, which collects the illumination produced by the discrete light-emitting elements and redirects this illumination in one or more predetermined directions, thereby blending together the one or more wavelengths of illumination and concentrating the illumination in the predetermined directions. The illumination system further comprises a power system, which provides energy to the light-emitting elements thereby resulting in their activation. Through the blending of the illumination produced by the discrete light-emitting elements together with the redirection of the illumination in a desired direction, both of which are enabled by the diffuser placed proximate to the discrete light-emitting elements, the creation of a blended pattern of illumination from these discrete light-emitting elements is provided, wherein this pattern of illumination can be one or more lines or planes of illumination.
Abstract:
A generator of energy-depleted radiation and various methods and applications using the energy-depleted radiation. Various embodiments are disclosed of the energy-depleted radiation generator and an energy-restored radiation generator, which permits detection of wave properties of the radiation without regard to the depletion of its energy. The energy-depleted radiation generator functions in one embodiment by selective transmission of destructively interfering radiation. Other embodiments use two-beam coupling or directional coupling to achieve energy depletion. Restoring energy to an energy-depleted radiation beam is accomplished by transferring energy to it from a reference beam, in a beam-to-beam transfer or in an optical amplifier. The invention has important applications in fields such as communications, specimen analysis, photorefractive recording, holography, and other fields in which the reduction of energy content in the associated radiation is advantageous.
Abstract:
A wavelength shifting filter having two sheets of material adjacent and parallel with a spacer therebetween about the periphery of the sheets. The sheets are held in a frame. A phosphor coating is located on the inner side of one of the sheets. A transilluminator is associated with the filter and provides radiation in the UV wavelength. One sheet of the filter transmits the UV wavelength. The other sheet transmits at least a portion of the wavelength that the phosphor coating generates when subjected to the UV radiation of the transilluminator. The visual effect of white light is enhanced by the use of white glass.