Abstract:
A optical system comprises: a light source; a first polarizer, configured to receive light emitted by the light source and convert it into first linearly polarized light; an optical prism group, configured to receive the first linearly polarized light and reflect it to a liquid crystal detecting head; the liquid crystal detecting head, configured to convert the first linearly polarized light into second linearly polarized light by using optical rotation characteristic of liquid crystal molecules, and emit the second linearly polarized light; a second polarizer, configured to receive the second linearly polarized light reflected by the liquid crystal detecting head and transmitted by the optical prism group, and convert the second linearly polarized light into third linearly polarized light; a light intensity detector, configured to receive the third linearly polarized light and calculate a light intensity thereof; wherein, the polarization directions of the first and second polarizers are opposite.
Abstract:
A polarized light detection system includes a detection apparatus, a power source, and a photoresistor. The detection apparatus, power source and photoresistor are electrically connected with wires to form a galvanic circle. The photoresistor includes a photosensitive material layer with a first surface and a second surface opposite to each other, a first electrode layer located on the first surface of the photosensitive material layer, and a second electrode layer located on the second surface of the photosensitive material layer. The first electrode layer includes a carbon nanotube film structure.
Abstract:
A demodulation sensor (30) is described for detecting and demodulating a modulated radiation field impinging on a substrate (31). The sensor comprises the means (1,7,15) for generating, in the substrate, a static majority current assisted drift (Edrift) field, at least one gate structure (33) for collecting and accumulating minority carriers (21), the minority carriers generated in the substrate by the impinging radiation (28) field. The at least one gate structure comprises at least two regions (4,9,18) for the collection and accumulation of the minority carriers (21) and at least one gate (5,6,8) adapted for inducing a lateral electric drift field under the gate structure, the system thus being adapted for directing the minority carriers (21) towards one of the at least two regions (4,9) under influence of the static majority current assisted drift field and the lateral electric drift field induced by the at least one gate, and a means for reading out the accumulated minority carriers in that region.
Abstract:
A polarimeter is proposed that utilizes additional Stokes parameter measurements to determine both an average Stokes vector, as well as any rotation of the state of polarization around the Stokes vector. The optical polarimeter is configured to measure the state of polarization (SOP) under multiple, different conditions that yield both averaged Stokes vector and at least one other secondary (filtered) Stokes vector, the latter thus being determined from a subset of the conditions used to create the average Stokes vector. The secondary Stokes vector created from a filtered input will necessarily exhibit changes over time as a function of polarization transformations (based on filter-dependent changes), while the average Stokes vector will retain a constant value. Thus, a comparison of the average Stokes vector to the changing secondary Stokes vector allows for these polarization-dependent transformations to be recognized.
Abstract:
A light measurement apparatus includes a polarizing optical element, an orthogonal separating section, a light reception section, a rotation control section and a polarization state measuring section. The polarizing optical element converts detection light to linearly polarized light. The orthogonal separating section orthogonally separates the linearly polarized light into orthogonally separated lights. The light reception section receives the orthogonally separated lights. The rotation control section rotates the polarizing optical element so that a rotation axis extends along an optical path of the detection light. The polarization state measuring section measures a polarization state of the detection light using intensities of the orthogonally separated lights.
Abstract:
Perioperative patient blood glucose concentrations are determined by imposing patient effluent ultrafiltrate through a sample cell incorporated in an automated polarimeter. The device includes an optical platform, fluid handling subassembly, controlling electronics, and integration software. A stable collimated light source of known intensity and distinct specified wavelength is passed through an optical platform including a polarizer, retarder, bandpass filters, sample flow cell, analyzer and detector. The angular rotation of the transmitted light resulting from the glucose contained in patient ultrafiltrate collected in the sample flow cell is recorded and provides a measure of the glucose concentration.
Abstract:
A dual scanning and FTIR system for application in the Terahertz and broadband blackbody frequency range including sources for providing Thz and broadband blackbody range and electromagnetic radiation, at least one detector of electromagnetic radiation in the THZ and broadband blackbody ranges, and at least one rotating element between the source and detector.
Abstract:
A system for page detection using light attenuators is applied in a book to detect an opened page of the book. The book has N pages and each page has a page detection area in which at most M light attenuators are installed in each page detection area. A light source passes through the at most M light attenuators for attenuating intensity of the light source. M light sensing devices are installed in an area of the book that corresponds to the page detection area. The M light sensing devices are used to detect attenuated intensities of the light source. A controller is connected to the M light sensing devices for detecting the opened page based on a ratio of the intensities of the light source detected by the M light sensing devices on each page.
Abstract:
An optical parameter measuring apparatus for measuring optical parameters of an object includes a light source, a polarizing module, a Stokes polarimeter and a calculating module. The light source emits a light which is polarized by the polarizing module and received by the Stokes polarimeter. According to the light information generated by the Stokes polarimeter, Mueller matrixes of linear birefringence, circular birefringence, linear dichroism, circular dichroism and linear/circular depolarization of the object, and Stokes vector established according to the Mueller matrixes, the calculating module calculates the optical parameters.
Abstract:
An optical module of an atomic oscillator includes: a surface emitting laser adapted to emit light; a depolarization element irradiated with the light emitted from the surface emitting laser, and adapted to dissolve a polarization state of the light irradiated; a polarization element irradiated with light having been transmitted through the depolarization element; a λ/4 plate irradiated with light having been transmitted through the polarization element, and having a fast axis disposed so as to rotate by 45 degrees with respect to a polarization transmission axis of the polarization element; a gas cell encapsulating an alkali metal gas, and irradiated with light having been transmitted through the λ/4 plate; and a light detection section adapted to detect intensity of light having been transmitted through the gas cell.