Abstract:
An aircraft includes a fuselage, a wing, a ducted fan and a controller. The wing and the ducted fan are coupled to the fuselage. The controller is operable to control the aircraft in a vertical flight mode, a horizontal flight more, and transition the aircraft from the vertical flight mode to the horizontal flight mode.
Abstract:
This disclosure generally relates to an automotive drone deployment system that includes at least a vehicle and a deployable drone that is configured to attach and detach from the vehicle. More specifically, the disclosure describes the vehicle and drone remaining in communication with each other to exchange information while the vehicle is being operated in an autonomous driving mode so that the vehicle's performance under the autonomous driving mode is enhanced.
Abstract:
A system for facilitating automated landing and takeoff of an autonomous or pilot controlled hovering air vehicle with a cooperative underbody at a stationary or mobile landing place and an automated storage system used in conjunction with the landing and takeoff mechanism that stores and services a plurality of UAVs is described. The system is primarily characterized in that the landing mechanism is settable with 6 axes in roll, pitch, yaw, and x, y and z and becomes aligned with and intercepts the air vehicle in flight and decelerates the vehicle with respect to vehicle's inertial limits. The air vehicle and capture mechanism are provided with a transmitter and receiver to coordinate vehicle priority and distance and angles between landing mechanism and air vehicle. The landing and takeoff system has means of tracking the position and orientation of the UAV in real time. The landing mechanism will be substantially aligned to the base of the air vehicle. With small UAVs, their lifting capacity is limited. Reducing sensing and computation requirements by having the landing plate perform the precision adjustments for the landing operation allows for increased flight time and/or payload capacity.
Abstract:
A VTOL aircraft is disclosed comprising a plurality of autonomous lifting modules wherein each autonomous lifting module is composed of a physical structure in which are mounted one or more electric ducted fans, an electrical energy storage system to drive the electric ducted fans, a charging and energy storage monitoring system to charge and monitor the electrical energy storage system, an inertial navigation system, electronic speed controllers to control the electric ducted fans and one or more microcomputers assuring (a) module flight stability by control of the electric ducted fans given the input of the inertial navigation system, (b) flight planning and (c) inter-module communication.
Abstract:
An unmanned aerial launch vehicle (UAV) launch apparatus is disclosed that includes a UAV (400) having an exterior surface, an aerial vehicle (AV) tab (510) extending from the exterior surface, a tube (440) containing the UAV (400), the tube (440) including a tab stop (515) configured to controllably hinder travel of the AV tab (510) past the tab stop (515), and a pair of opposing tab guides (700, 705) configured to position the AV tab (510) for travel over the tab stop (515).
Abstract:
Systems, methods, and devices are provided that enable robust operations of a small unmanned aircraft system (sUAS) using a compound wing. The various embodiments may provide a sUAS with vertical takeoff and landing capability, long endurance, and the capability to operate in adverse environmental conditions. In the various embodiments a sUAS may include a fuselage and a compound wing comprising a fixed portion coupled to the fuselage, a wing lifting portion outboard of the fixed portion comprising a rigid cross member and a controllable articulating portion configured to rotate controllable through a range of motion from a horizontal position to a vertical position, and a freely rotating wing portion outboard of the wing lifting portion and configured to rotate freely based on wind forces incident on the freely rotating wing portion.
Abstract:
Aerial vehicles may be equipped with collapsible lift propellers and thrust propellers. The collapsible lift propellers may include retractable tips that may pivot or rotate from a first orientation substantially co-aligned with a main body of the collapsible lift propellers during ordinary operations and a second orientation substantially transverse to the main body of the collapsible lift propellers when rotation of the collapsible lift propellers is stopped. The collapsible lift propellers may further include biasing elements, e.g., springs for biasing the retractable tips into the second orientation, and mechanical stops for inhibiting the pivoting or rotation of the retractable tips beyond the first orientation.
Abstract:
A flight control apparatus for fixed-wing aircraft includes a first port wing and first starboard wing, a first port swash plate coupled between a first port rotor and first port electric motor, the first port electric motor coupled to the first port wing, and a first starboard swash plate coupled between a first starboard rotor and first starboard electric motor, the first starboard electric motor coupled to the first starboard wing.
Abstract:
A multi-position landing gear for an aircraft may include a first landing skid disposed on a bottom side of the aircraft, and a second landing skid disposed on one of a top side or the bottom side of the aircraft, wherein the first landing skid and the second landing skid are rotatable relative to the aircraft.
Abstract:
Current aircraft technology comprises of fixed wing, multi rotor and vectored engine design. The synthesis of fixed wing technology and vectoring engine technology has been implemented but limited to traditional fixed wing design aircraft. The aircraft presented has been designed with an innovation in airframe expectation, improved vectoring engine design system, and landing gear system.