Abstract:
A method and system for inspecting a manufactured part at an inspection station are provided. A supported part is rotated about a measurement axis so that the part moves at predetermined angular increments during at least one rotational scan. A backside beam of collimated radiation is directed at and is occluded by the supported part at each of a first plurality of consecutive increments of movement to create a stream of unobstructed portions of the backside beam in rapid succession passing by and not blocked by the supported part. A frontside beam of radiation is directed at and is reflected by the supported part at each of a second plurality of consecutive increments of movement to create a stream of reflected portions of the frontside beam in rapid succession. The streams of reflected and unobstructed portions are detected at the inspection station to obtain electrical signals which are processed.
Abstract:
A Raman detecting system includes a bowl shaped metal nanostructure array configured to load a sample, a projecting module configured to project a beam of light to the bowl shaped metal nanostructure array, and a receiving module configured to collect the light scattered by the bowl shaped metal nanostructure array. The bowl shaped metal nanostructure array includes a substrate having a surface and a number of particle-in-bowl structures located on the surface of the substrate. Each particle-in-bowl structure includes a bowl shaped concave structure and a protruding member protruding from the bowl shaped concave structure. The protruding member is integrated with the bowl shaped concave structure.
Abstract:
A perforated-structure body having a plurality of apertures that penetrate from a first main surface to a second main surface of a perforated plate. Support substrates are stacked on at least one of the first main surface and the second main surface of the perforated plate so as to define a portion through which at least one of the apertures is exposed.
Abstract:
An aggregate board, comprising: an insulator having a front face and a rear face; a pair of a first front face wiring pattern and a second front face wiring pattern, a plurality of which are arranged on the front face of the insulator; a pair of a first rear face wiring pattern and a second rear face wiring pattern, a plurality of which are arranged on the rear face of the insulator; at least one first inner layer wiring pattern that is separated from the second front face wiring pattern and the second rear face wiring pattern, that is connected to the first front face wiring pattern and the first rear face wiring pattern, and that extends in a first direction in an interior of the insulator; at least one second inner layer wiring pattern that is separated from the first front face wiring pattern and the first rear face wiring pattern, that is connected to the second front face wiring pattern and the second rear face wiring pattern, and that has a part that extends in a second direction which is different from the first direction, in the interior of the insulator; and the first inner layer wiring pattern and the second inner layer wiring pattern being positioned in the same layer.
Abstract:
Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.
Abstract:
Aspects of the present disclosure relate to a capillary fluidic device comprising at least two inlets, a microfluidic channel and an outlet. The device allows for the autonomous and programmable sequential flow of the same or different fluids using capillary fluidics for autonomous pumping of liquids to other downstream fluidic structures. External pumping and valving systems are not required, thus reducing complexity and increasing portability of stand-alone microfluidic systems. Aspects of the present disclosure can be applied to other fluidic structures for performing analytical biological assays. The integration has at least one reaction chamber and at least one capillary pump. The device is integrated with at least one sensor for detection and quantification of the biological assay signals.
Abstract:
A method of measuring a position of a liquid surface in a light transmissive container, includes: irradiating a liquid surface with light obliquely so the light is transmitted through an inner wall that comes into contact with liquid and is totally reflected from an inner wall that comes into contact with air in the state in which a light-receiving surface is present on a bottom portion of the container; and detecting a position of a boundary between a dark portion and a bright portion generated by the total reflection on the light-receiving surface.
Abstract:
Disclosed is an apparatus for analyzing the composition of bodily fluid. The apparatus can include a fluid handling network including a patient end configured to maintain fluid communication with a bodily fluid in a patient and a pump unit in operative engagement with the fluid handling network. The pump unit can have an infusion mode, in which the pump unit is operable to deliver infusion fluid to the patient through the patient end, and a sample draw mode, in which the pump unit is operable to draw a sample of the bodily fluid from the patient through the patient end. The apparatus can include a spectroscopic analyzer positioned to analyze at least a portion of the sample; a processor in communication with or incorporated into the spectroscopic analyzer; and stored program instructions executable by the processor to obtain measurements of two or more properties of the sample.
Abstract:
A device for spraying a liquid for use in dye penetration inspection into an inner cavity of a workpiece for making a turbine engine part, the device including a workpiece support, a manifold for spraying the inspection liquid into the inner cavity, a manifold for sucking up and discharging the sprayed inspection liquid, and a mechanism for tilting at least a portion of the support from a substantially horizontal position to an inclined position in which the workpiece is inclined so that the inspection liquid sprayed into the cavity flows under gravity to a zone from which it is sucked up.
Abstract:
An active-source-pixel, integrated device capable of performing biomolecule detection and/or analysis, such as single-molecule nucleic acid sequencing, is described. An active pixel of the integrated device includes a sample well into which a sample to be analyzed may diffuse, an excitation source for providing excitation energy to the sample well, and a sensor configured to detect emission from the sample. The sensor may comprise two or more segments that produce a set of signals that are analyzed to differentiate between and identify tags that are attached to, or associated with, the sample. Tag differentiation may be spectral and/or temporal based. Identification of the tags may be used to detect, analyze, and/or sequence the biomolecule.