Abstract:
Bonding pad(s) for a printed circuit board with circuit patterns are provided. The bonding pad(s) include a plurality of copper patterns formed on the PCB and electrically connected to the circuit patterns, a filler filled between the copper patterns such that an upper surface of the copper pattern is exposed, and a plating layer applied at an upper surface of the copper patterns. An interval between wire bonding pad(s) is reduced by preventing a nickel plating layer and a gold plating layer from protruding at a lower portion of a copper pattern when they are formed on the copper patterns.
Abstract:
A semiconductor substrate structure includes a substrate having a trench formed thereon, a polymer composite material supplied into the trench and an electroplate conductive layer formed on the substrate. Further, a semiconductor substrate processing method includes the steps of: providing a substrate forming a trench thereon, supplying a polymer composite material into the trench, polishing a surface of the substrate and forming a covering material on the surface of the substrate. Therefore, the method is provided for combining the polymer composite material into the substrate, thereby to raise cutting precision and strength of the semiconductor substrate structure.
Abstract:
A method for producing printed circuit boards and/or corresponding constructs that includes points where through-connections are created. The method vitiates the need for a very complex brushing process by using low cost lacquer variants. Moreover, the disclosed methods allow additional strip conductors or appropriate layers to be guided directly across the through connections rather than just to the through connections.
Abstract:
The present invention provides a method for manufacturing an electronic part that can cope with downsizing, improvement in performance and quality of a multilayer electronic part. A ceramic green sheet is produced by forming on a substrate or on a layer formed on a substrate an internal electrode having a predetermined thickness by a discretional process, forming a photosensitive ceramic slurry on a surface of the substrate or the layer and the internal electrode in such a way that its thickness just before exposure will be substantially equal to or smaller than the thickness of the internal electrode from the surface of the substrate or the layer, irradiating the photosensitive ceramic slurry with light from the upper side of the substrate to perform exposure while masking the internal electrode pattern, to selectively harden the surface of the photosensitive ceramic slurry, the exposure amount being controlled in such a way that the surface of the photosensitive ceramic slurry is hardened, and removing the portion of the photosensitive ceramic slurry that has not been exposed by a development process to expose a surface of the internal electrode pattern.
Abstract:
The present invention provides a method of manufacturing a multilayer wiring substrate, which can preserve the dimensional stability of a conductor pattern at a fine pitch, solve the restriction on a process from the viewpoint of material selection, and further reduce a manufacturing cost, and a multilayer wiring substrate. A second wiring substrate formed on a supporting sheet made of metal and an adhesive layer are partially stacked on a predetermined region of a first wiring substrate by using the supporting sheet. After the lamination of the second wiring substrate, the supporting sheet is finally etched and removed. The second wiring substrate is stacked only on the portion required to be multilayered on the first wiring substrate to thereby reduce the amount of the construction material of the second wiring substrate.
Abstract:
A mounting board on which a semiconductor chip having multiple connection bumps is to be mounted by flip-chip bonding is disclosed. The mounting board includes multiple connection pads to be electrically connected to the corresponding connection bumps, where the connection pads have respective surfaces coated with solder; and an insulating layer configured to surround the connection pads and isolate the connection pads from each other. Each of the connection pads has a first region and at least one second region to be connected to a corresponding one of the connection bumps. The first region has a surface substantially as high as a surface of the insulating layer and the second region has a surface lower than the surface of the first region.
Abstract:
A wiring board comprising a first surface on which a first electrode is disposed and a second surface on which a second electrode is disposed; at least a single insulation layer and at least a single wiring layer; and one or a plurality of mounted semiconductor elements, wherein the second electrode disposed on the second surface is embedded in the insulation layer, the surface on the opposite side of the exposed surface on the second surface side of the second electrode is connected to the wiring layer, and all or part of the side surface of the second electrode does not make contact with the insulation layer.
Abstract:
The present invention relates to a plasma display panel which includes a plasma display panel, a driving circuit for driving the plasma display panel, an electrical signal transmitting wire for electrically connecting an electrode extended from the plasma display panel to the driving circuit, and an adhesive film interposed between the terminal end of the electrical signal transmitting wire and the terminal end of the electrode of the plasma display panel and electrically connecting between terminal ends. The adhesive film includes an anisotropic conductive film layer having a plurality of conductive particles and an insulated dummy at either or both ends of the anisotropic conductive film layer. Alternatively, the adhesive film may include a plurality of conductive particles with an insulated layer on each side.
Abstract:
An information handling system has a printed circuit board with a split power plane having a plurality of sections that may be used for distributing different voltages on a single conductive foil layer of the printed circuit board to components on the printed circuit board. Capacitive coupling of the split power plane sections may be enhanced with a high dielectric fill between the portions.
Abstract:
There is provided a method for manufacturing a flat printed wiring board in which spaces between circuit patterns are filled with a resin. The method comprises: laminating via a mold release film a plurality of sets of laminated bodies formed by superposing a semi-cured resin sheet on a printed wiring board with circuit patterns formed thereon; placing the laminated plural sets of the laminated bodies interposed between a pair of smoothing plates and collectively pressing the laminated bodies in a reduced pressure atmosphere used for curing the resin; and then polishing the cured resin covering the circuit patterns, thereby exposing the circuit patterns.