Easily adjustable optical emission spectrometer

    公开(公告)号:US12130178B2

    公开(公告)日:2024-10-29

    申请号:US17774405

    申请日:2020-11-04

    CPC classification number: G01J3/0286 G01J3/0291 G01J3/18 G01J3/36

    Abstract: The invention relates to an optical emission spectrometer (1) being easily adjustable, and to a method (100) to set-up and operate such a spectrometer (1) comprising a plasma stand (2) to establish a light emitting plasma from sample material, and an optical system (3) to measure the spectrum of the light (L) emitted by the plasma being characteristic to the sample material, where the optical system (3) comprises at least one light entrance aperture (31), at least one diffraction grating (32) to split up the light (L) coming from the plasma (A) and one or more detectors (33) to measure the spectrum of the light (L), wherein the plasma stand (2) and the optical system (3) are directly and fixedly mounted on respective a plasma stand flange (2B) and an optical system flange (3B) which are directly and fixedly connected to each other and wherein the optical emission spectrometer (1) further comprises an analyzing unit (34) adapted to analyze the measured spectrum and to compensate for a drift of the spectrum relative to the detector (33) potentially caused by heat transferred from the plasma stand (2) to the optical system (3) considering the thermal expansion of the optical system (3).

    Material identification through image capture of Raman scattering

    公开(公告)号:US12025561B2

    公开(公告)日:2024-07-02

    申请号:US17604006

    申请日:2020-04-15

    Abstract: A hand-held sized imaging instrument identifies molecules with high selectivity and in complex mixtures. The instrument uses inelastic scattering and scattering intensities from with machine learning algorithms based on convolutional neural networks (CNN's) to identify the presence of a specified chemical or combination of chemicals. A laser is housed within the instrument to initiate a material response of a sample using laser light of a specified wavelength. The instrument uses an image sensor to capture visible images with inelastic scattering information. The CNN is able to classify the image to determine whether the specified chemical or combination of chemicals is present in the sample. The instrument is inexpensive, portable, easy to use by anyone (nonchemist, nonprofessional), and safe (laser is completely housed). The instrument can be used efficiently and easily for quality control, security, and other applications to reliably detect the presence of specified substances.

    Spectrograph recycling
    258.
    发明授权

    公开(公告)号:US11976971B2

    公开(公告)日:2024-05-07

    申请号:US17272667

    申请日:2019-09-04

    Inventor: Will Johnson

    Abstract: Spectrographic measurements are often limited by the amount of light that is available. Photons that are not collected or measured reduce the signal to noise and therefore reduce measurement precision. This invention collects the zero order light and sends it through the spectrometer again. In an atmospheric LIDAR, the zero order recycling is estimated to increase the rotational Raman signal by an additional 20%. A grating based spectrometer where the zero order light is collected by a lens or mirror and focused into a fiber optic that sends the light to the input slit where it is directed into the spectrometer again. There can be a plurality of recycle fibers. The detector can be either a single linear array or a two dimensional array such as a CCD or CMOS camera.

Patent Agency Ranking