Abstract:
A method for two-dimensional, spatially resolved measurement of tristimulus values of light emitted from a plurality of positions on a sample. In various embodiments, an improved method and system is provided for spatially resolved chromaticity and luminance measurement in a standardized color space for display testing. The method may include directing a first portion of the light to an RGB camera which produces a two-dimensional map of RGB color values; transforming the RGB color values into first tristimulus values to produce a map of tristimulus values; directing a second portion of the light to a colorimeter which produces second tristimulus values; deriving a tristimulus correction by comparing the second tristimulus values with at least a subset of the first tristimulus values; and applying the tristimulus correction to the first tristimulus values to produce a corrected map of tristimulus values. In many embodiments, the imaging colorimeter system is capable of two-dimensional, spatially resolved measurement of tristimulus values of light emitted from a plurality of positions on a sample.
Abstract:
The invention relates to a method for two-dimensional, spatially resolved measurement of tristimulus values of light emitted from a plurality of positions on a sample. It is an object of the invention to provide an improved method and system for spatially resolved chromaticity and luminance measurement in a standardized color space for display testing. The method of the invention comprises the steps of:directing a first portion of the light to an RGB camera which produces a two-dimensional map of RGB color values;transforming the RGB color values into first tristimulus values to produce a map of tristimulus values;directing a second portion of the light to a colorimeter which produces second tristimulus values;deriving a tristimulus correction by comparing the second tristimulus values with at least a subset of the first tristimulus values; andapplying the tristimulus correction to the first tristimulus values to produce a corrected map of tristimulus values. Moreover, the invention relates to an imaging colorimeter system capable of two-dimensional, spatially resolved measurement of tristimulus values of light emitted from a plurality of positions on a sample.
Abstract:
An image/video may be analyzed to determine quality of its attributes, including local, global and pixel colorfulness, sharpness, and contrast to obtain an image quality measure. Invented quality may be obtained for captured images or videos and compared to a database or reference value of quality measures to identify quality of products, component anomalies, and product matches.
Abstract:
An optical module includes a circuit substrate that has a concave portion and a flat surface, an optical sensor that is disposed inside a space, and an optical filter device that has a base which accommodates a variable wavelength interference filter and has a light-through hole through which light emitted from the variable wavelength interference filter passes and a first glass member which is disposed in the light-through hole. The first glass member is positioned inside the space. The base is bonded to the flat surface. The distance between the first glass member and the optical sensor is set to a distance at which light emitted from the variable wavelength interference filter does not interfere between the first glass member and the optical sensor.
Abstract:
A light measuring device can measure, in one place, a plurality of lights guided from different places. The light measuring device includes a spectroscope configured to selectively transmit light having a desired wavelength, a plurality of light guiding units configured to guide measurement target light to the spectroscope, and a light receiving unit configured to receive the light emitted from the spectroscope. The light guiding units are provided in positions where different lights are respectively made incident on incident ends of the light guiding units as the measurement target light and positions where emission ends of the light guiding units respectively emit lights to different positions of the spectroscope. The spectroscope emits the lights, which are made incident from the light guiding units, respectively from different positions. The light receiving unit separately receives the lights emitted from the different positions of the spectroscope.
Abstract:
Color calibration of color image rendering devices, such as large color displays, which operate by either projection or emission of images, utilize internal color measurement instrument or external color measurement modules locatable on a wall or speaker. A dual use camera is provided for a portable or laptop computer, or a cellular phone, handset, personal digital assistant or other handheld device with a digital camera, in which one of the camera or a display is movable with respect to the other to enable the camera in a first mode to capture images of the display for enabling calibration of the display, and in a second mode for capturing image other than of the display. The displays may represent rendering devices for enabling virtual proofing in a network, or may be part of stand-alone systems and apparatuses for color calibration. Improved calibration is also provided for sensing and correcting for non-uniformities of rendering devices, such as color displays, printer, presses, or other color image rendering device.
Abstract:
A method of manufacturing an EL display device having a light emitting part, in which a plurality of pixels are arrayed, and a thin-film transistor array device to control light emission of the light emitting part, includes a luminance measurement step of obtaining luminance data of pixel, with the light emitting part being lit. The luminance measurement step includes a first luminance measurement step and a second luminance measurement step. In the first luminance measurement step, a first imaging apparatus obtains luminance data by measuring light emission of the each pixel. The first apparatus has a resolution corresponding to that of the pixels of the light emitting part. In the second luminance measurement step after the first step, a second imaging apparatus measures light emission of a plurality of the pixels to correct the luminance data of the each pixel obtained in the first luminance measurement step. The second imaging apparatus is lower in resolution than the first imaging apparatus.
Abstract:
A testing device for testing one more characteristics of an electronic display. The testing device includes a main body and a receiving cavity defined within the main body configured to receive at least a portion of the electronic display. The testing device also includes a plurality of sensors positioned on a first surface of the testing device and configured to be in optical communication with at least a portion of the electronic display received within the cavity. The plurality of sensors is configured to detect at least one type of non-uniformity of the electronic display by detecting light emitted from the electronic display.
Abstract:
An LED classification device (21) classifies LEDs, the LEDs each including a combination of an LED element that emits a primary light and a phosphor that, upon excitation by the primary light, emits a secondary light having a longer wavelength than the primary light, the LEDs each emitting a combined light of the primary light and the secondary light, those ones of the LEDs whose primary lights having their chromaticities falling within a predetermined chromaticity range being classified as LEDs for use in a backlight of a liquid crystal display apparatus. A coefficient calculating section (26) and a corrected chromaticity calculating section (27) calculate, for all of the LEDs to be classified, correction values for the chromaticities as obtained on the assumption that the primary lights have traveled through a color filter of the liquid crystal display apparatus, and correct chromaticities by subtracting the correction values from chromaticities obtained for all of the LEDs to be classified, respectively. A chromaticity rank classification section (28) classifies the LEDs according to chromaticity rank on the basis of the corrected chromaticities.
Abstract:
A display device, a mobile device, a system including the same, and an image quality matching method thereof are provided. According to the method, the mobile device acquires a first acquired image that is an image of a first displayed image being displayed on the first display device and a second acquired image that is an image of a second displayed image being displayed on the second display device, compares the first acquired image and the second acquired image with each other, determines an image quality correction value for the first display device so that an image quality of the first displayed image is made substantially equal to an image quality of the second displayed image, and transmits the determined image quality correction value to the first display device or the second display device.