Abstract:
A method for screening fiber polarization mode dispersion using a polarization optical time domain reflectometer. A pulse radiation is emitted into the fiber under test, and the backscattered radiation is measured by the POTDR and used to obtain a POTDR trace. The POTDR trace is then analyzed to compare the variation of signals along the length of the fiber, the variation in signals relating to the level of PMD along the length of the fiber. Because high levels of PMD correspond to localized levels of low variability, by setting the variability of signal threshold sufficiently low, fibers having unacceptably high localized PMD can be identified and removed.
Abstract:
An apparatus for information extraction from electromagnetic energy via multi-characteristic spatial geometry processing to determine three-dimensional aspects of an object from which the electromagnetic energy is proceeding. The apparatus receives the electromagnetic energy. The received electromagnetic energy has a plurality of spatial phase characteristics. The apparatus separates the plurality of spatial phase characteristics of the received electromagnetic energy. The apparatus r identifies spatially segregated portions of each spatial phase characteristic, with each spatially segregated portion of each spatial phase characteristic corresponding to a spatially segregated portion of each of the other spatial phase characteristics in a group. The apparatus quantifies each segregated portion to provide a spatial phase metric of each segregated portion for providing a data map of the spatial phase metric of each separated spatial phase characteristic. The apparatus processes the spatial phase metrics to determine surface contour information for each segregated portion of the data map.
Abstract:
An ellipsometry system and method using spectral imaging are provided. The ellipsometry system includes a light source group for projecting a white light collimated to a multi-point region defined on the surface of a sample, a light analysis group for polarizing a reflected white light to analyze it, and a spectral imaging group for dispersing and imaging the polarized white light. The white light collimated to the multi-point region is input to the spectral imaging group and dispersed by a light dispersing means by wavelengths such that the dispersed lights are imaged on one axis of an imaging plane by the points forming the multi-point region and imaged on the other axis of the imaging plane by wavelengths, to obtain optical data having information about the physical property of the points and wavelengths. Accordingly, a large amount of data can be obtained by wavelengths and points to improve rapidity and reliability of measurement.
Abstract:
Remotely sensing a target may include generating a first beam of optical radiation that is modulated at a first frequency and polarized at a first polarization. A second beam of optical radiation that is modulated at a second frequency and polarized at a second polarization may also be generated. The first and second beams of optical radiation may be transmitted to the target. Radiation at the first polarization and radiation at the second polarization may be detected from the target using a phase sensitive technique and the first and second frequencies.
Abstract:
An optical spectrum analyzer includes a polarization modifier that eliminates polarization-dependent wavelength spreading, enabling the analyzer to have high signal selectivity and high measurement sensitivity. The polarization modifier spatially separates orthogonal polarization components of the applied optical signal into separate optical beams and rotates the relative polarization components of the beams so that the beams are incident on a tunable interference filter in a multipass configuration at a single polarization state. The optical beams are directed through regions of the interference filter which lie on a contour of substantially equal center wavelength so that each of the multiple passes through the interference filter provides for corresponding narrowing of the filter bandwidth. Narrow bandwidth and low insertion loss are maintained over a wide tuning range by tilting the interference filter about a tilt axis intercepting the regions of the interference filter that lie on a contour of substantially equal optical thickness.
Abstract:
An ellipsometer, and a method of ellipsometry, for analyzing a sample using a broad range of wavelengths, includes a light source for generating a beam of polychromatic light having a range of wavelengths of light for interacting with the sample. A polarizer polarizes the light beam before the light beam interacts with the sample. A rotating compensator induces phase retardations of a polarization state of the light beam wherein the range of wavelengths and the compensator are selected such that at least a first phase retardation value is induced that is within a primary range of effective retardations of substantially 135.degree. to 225.degree., and at least a second phase retardation value is induced that is outside of the primary range. An analyzer interacts with the light beam after the light beam interacts with the sample. A detector measures the intensity of light after interacting with the analyzer as a function of compensator angle and of wavelength, preferably at all wavelengths simultaneously. A processor determines the polarization state of the beam as it impinges the analyzer from the light intensities measured by the detector.
Abstract:
Disclosed is an electromagnetic beam directing system and method which enables changing the direction of propagation of a beam of electromagnetic radiation without significantly changing the phase angle between orthogonal components therein. Two pairs of mirrors are oriented to form two orthogonally related planes such that phase shift entered to an electromagnetic beam by interaction with the first pair of mirrors is canceled by interaction with the second pair.
Abstract:
An apparatus for detecting a polarization altering substance, such as ice, on a surface includes a polarizing filter on the surface between the surface and the polarization altering substance. When the polarizing filter includes alternating regions having orthogonal polarizing properties, only one viewing of the surface through a blocking filter is required. When light, either polarized or unpolarized, reflects off the surface, it passes through the polarizing filter and becomes polarized. Reflected light that additionally passes through ice after leaving the polarizer becomes unpolarized. When viewed through a blocking polarizer filter, polarized light passing through ice appears bright due to the unpolarizing effect of ice. On the other hand, polarized light not passing through ice retains its polarization and appears dark when viewed through a blocking filter. Since the polarizing filter is between the surface and the viewer, the surface can be metallic, dielectric, or painted without affecting the results. If the proper blocking orientation for the viewer is not known in advance, the Stokes coefficients can be calculated if views are taken through a series of specified polarizing filters. The ratio of polarized light returned to the viewer compared to the unpolarized light returned to the viewer can then be calculated from any arbitrary position. A retroreflective substance on the surface further enhances the effect for systems employing an active illumination source located coaxially with or adjacent to the imaging system.
Abstract:
Disclosed is a dispersive optics system, in the context of sample substrate system investigating spectroscopic reflectometer and the like systems, which, in use, produce a plurality of "Orders" of essentially single wavelength beams of light from a polychromatic beam of light. In use the availability of more than one "Order" of essentially single wavelength beams of light allows simultaneous measurement of more essentially single wavelength beams of light, over a larger range, than would be possible were only one "Order" of essentially single wavelength beams of light present. Filters are present to reduce the effects of stray light on detector elements and to allow separating the wavelengths in overlapping regions of adjacent Orders. Also disclosed is a quadrant detector means of dispersive optics alignment, and a compensator means for reducing the effect of detector element polarization state dependence.
Abstract:
The present invention is applicable generally to Spectroscopic Rotatable and Rotating Element Ellipsometers which utilize a relatively large range of wavelengths. Disclosed is a system and method for controlling the polarization state of a polarized beam of light so that it is in a range where the sensitivity of a Polarization State Detector used to measure changes in said polarized beam of light resulting from interaction with a Sample System, to noise and measurement errors etc., is reduced. Exemplified is a system, and method of use, for simultaneously setting both measured ellipsometric ALPHA, and ellipsometric BETA parameter values, (or equivalents), within ranges, in which ranges the sensitivity of transfer functions, and mathematical regressions which utilize said ellipsometric ALPHA and ellipsometric BETA values in the calculation of sample system characterizing PSI and DELTA constant values, to noise and errors in measurement etc., is found to be negligible. The present invention allows obtaining accurate and precise sample system PSI and DELTA Values from an Ellipsometer System in which a polarized beam of light is oriented at other than a Principal of Brewster Angle of Incidence to a sample system, allows determination of DELTA values in ranges otherwise not impossible, allows determination of the "Handedness" of a polarized beam of light, and provides means for determining all of Stokes Vector and Mueller Matrix component values. The present invention also provides means for making all system components added to a conventional ellipsometer system essentially end user transparent when desired, without removal thereof from said ellipsometer system.