Abstract:
A MEMS vibrator includes: a substrate; a first electrode disposed above the substrate; and a second electrode disposed in a state where at least one portion of the second electrode has a space between the first electrode and the second electrode, and having a beam portion capable of vibrating, in the thickness direction of the substrate, with electrostatic force and a supporting portion supporting one edge of the beam portion and disposed above the substrate, wherein a supporting side face of the supporting portion supporting the one edge has a bending portion which bends in plan view from the thickness direction of the substrate, and the one edge is supported by the supporting side face including the bending portion.
Abstract:
A method of forming a Micro-Electro-Mechanical System (MEMS) includes forming a lower electrode on a first insulator layer within a cavity of the MEMS. The method further includes forming an upper electrode over another insulator material on top of the lower electrode which is at least partially in contact with the lower electrode. The forming of the lower electrode and the upper electrode includes adjusting a metal volume of the lower electrode and the upper electrode to modify beam bending.
Abstract:
A switch and a relay include a contact with a smooth contacting surface. A side surface of a fixed contact faces a side surface of a movable contact. The fixed contact has an insulating layer and a base layer stacked on a fixed contact substrate, and a first conductive layer formed thereon through electrolytic plating. The side surface of the first conductive layer that faces the movable contact becomes the fixed contact (contacting surface). The movable contact has an insulating layer and a base layer stacked on the movable contact substrate, and a movable contact formed thereon through electrolytic plating. A side surface of a second conductive layer that faces the fixed contact becomes the movable contact (contacting surface). The fixed contact and the movable contact have surfaces that contact the side surfaces of the mold portion when growing the first and second conductive layers through electrolytic plating.
Abstract:
A device includes a device wafer having a circuit component formed thereon and having vias formed therein and a cap wafer bonded to the device wafer. The cap wafer has a cavity therein. The cavity has a post formed therein, and the post is positioned to mechanically support the vias formed in the device wafer. The cavity has a volume, the volume substantially enclosing the circuit component formed on the device wafer. The cavity has a width and height such that an impedance of a transmission line is dependent upon the width and height of the cavity, or the impedance of a transmission line is dependent upon the width of a center conductor within the cavity.
Abstract:
The present subject matter relates to MEMS tunable capacitors and methods for operating such capacitors. The tunable capacitor can feature a primary stationary actuator electrode on a substrate, a secondary stationary actuator electrode on the substrate, a stationary RF signal capacitor plate electrode on the substrate, a sprung cantilever disposed over the substrate, a beam anchor connecting a first end of the sprung cantilever to the substrate, and one or more elastic springs or other biasing members connecting a second end of the sprung cantilever to the substrate, the second end being located distally from the first end. The spring cantilever can be movable between an OFF state defined by the potential difference between the stationary and moveable actuator electrodes being zero, and an ON state defined by a non-zero potential difference between the stationary and moveable actuator electrodes.
Abstract:
A micro-electromechanical systems (MEMS) includes a substrate onto which a first conductive pad and a second conductive pad are formed. A conductive anchor coupled to the first conductive pad is a semi-circular frame that includes a first radial tab and a second radial tab. A conductive cantilever disc has a first end portion, a middle portion, and a second end portion. The first end portion of the conductive cantilever disc is coupled to the first radial tab and the second radial tab of the conductive anchor. The second end portion of the conductive cantilever disc is suspended over the second conductive pad with the middle portion being between the first end portion and the second end portion. A conductive actuator plate is formed onto the substrate at a location beneath the middle portion of the cantilever disc and between the first conductive pad and the second conductive pad.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes patterning a wiring layer to form at least one fixed plate and forming a sacrificial material on the wiring layer. The method further includes forming an insulator layer of one or more films over the at least one fixed plate and exposed portions of an underlying substrate to prevent formation of a reaction product between the wiring layer and a sacrificial material. The method further includes forming at least one MEMS beam that is moveable over the at least one fixed plate. The method further includes venting or stripping of the sacrificial material to form at least a first cavity.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes layering metal and insulator materials on a sacrificial material formed on a substrate. The method further includes masking the layered metal and insulator materials. The method further includes forming an opening in the masking which overlaps with the sacrificial material. The method further includes etching the layered metal and insulator materials in a single etching process to form the beam structure, such that edges of the layered metal and insulator material are aligned. The method further includes forming a cavity about the beam structure through a venting.
Abstract:
A method for manufacturing a micro electro-mechanical system (MEMS) switch system (600, 700) includes etching each of a plurality of base circuit layers (425) and a plurality of passive component substrate layers (412, 418, 42, 426). The method continues with laser milling of a first dielectric film (406) to create a spacer layer (405). A metal cladding (402, 403) formed on a flexible dielectric film layer 404 is etched so as to form a plurality of switch component features. Further laser milling is performed with respect to the flexible dielectric film layer to form at least one switch structure (448, 450). Thereafter, a stack (400) is assembled which is comprised of the spacer layer disposed between the flexible dielectric film layer and the plurality of base circuit layers. Additional layers can also be included in the stack. When the stack is completed, heat and pressure are applied to join the various layers forming the stack.
Abstract:
A micro-electromechanical systems (MEMS) includes a substrate onto which a first conductive pad and a second conductive pad are formed. A conductive anchor coupled to the first conductive pad is a semi-circular frame that includes a first radial tab and a second radial tab. A conductive cantilever disc has a first end portion, a middle portion, and a second end portion. The first end portion of the conductive cantilever disc is coupled to the first radial tab and the second radial tab of the conductive anchor. The second end portion of the conductive cantilever disc is suspended over the second conductive pad with the middle portion being between the first end portion and the second end portion. A conductive actuator plate is formed onto the substrate at a location beneath the middle portion of the cantilever disc and between the first conductive pad and the second conductive pad.