Abstract:
A plurality of mechanically coupled MEMS resonators that are arranged in an N×M MEMS array structure. Each MEMS resonators includes a plurality of straight (or substantially straight) elongated beam sections that are connected by curved/rounded sections. Each elongated beam section is connected to another elongated beam section at a distal end via the curved/rounded sections thereby forming a geometric shape (e.g., a rounded square). Further, each resonator is mechanically coupled to at least one other adjacent resonator of the array via a resonator coupling section. The resonator coupling sections may be disposed between elongated beam sections of adjacent resonators. The resonators, when induced, oscillate at the same or substantially the same frequency. The resonators oscillate in a combined elongating (or breathing) mode and bending mode; that is, the beam sections exhibit an elongating-like (or breathing-like) motion and a bending-like motion. The one or more of the resonators of the array structure may include one or more nodal points or areas (i.e., portions of the resonator that are stationary, experience little movement, and/or are substantially stationary during oscillation of the resonator/array) in one or more portions or areas of the curved sections of the structure. The nodal points are suitable and/or preferable locations to anchor the resonator/array to the substrate.
Abstract:
There are many inventions described and illustrated herein, as well as many aspects and embodiments of those inventions. In one aspect, the present invention is directed to a resonator architecture including a plurality of in-plane vibration microelectromechanical resonators (for example, 2 or 4 resonators) that are mechanically coupled to provide, for example, a differential signal output. In one embodiment, the present invention includes four commonly shaped microelectromechanical tuning fork resonators (for example, tuning fork resonators having two or more rectangular-shaped or square-shaped tines). Each resonator is mechanically coupled to another resonator of the architecture. For example, each resonator of the architecture is mechanically coupled to another one of the resonators on one side or a corner of one of the sides. In this way, all of the resonators, when induced, vibrate at the same frequency.
Abstract:
There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device having mechanical structures and anchors to secure the mechanical structures to the substrate. The anchors of the present invention are comprised of a material that is relatively unaffected by the release processes of the mechanical structures. In this regard, the etch release process are selective or preferential to the material(s) securing the mechanical structures in relation to the material comprising the anchors. Moreover, the anchors of the present invention are secured to the substrate in such a manner that removal of the insulation layer has little to no affect on the anchoring of the mechanical structures to the substrate.
Abstract:
There are many inventions described and illustrated herein. In one aspect, present invention is directed to a thin film encapsulated MEMS, and technique of fabricating or manufacturing a thin film encapsulated MEMS including an integrated getter area and/or an increased chamber volume, which causes little to no increase in overall dimension(s) from the perspective of the mechanical structure and chamber. The integrated getter area is disposed within the chamber and is capable of (i) “capturing” impurities, atoms and/or molecules that are out-gassed from surrounding materials and/or (ii) reducing and/or minimizing the adverse impact of such impurities, atoms and/or molecules (for example, reducing the probability of adding mass to a resonator which would thereby change the resonator's frequency). In this way, the thin film wafer level packaged MEMS of the present invention includes a relatively stable, controlled pressure environment within the chamber to provide, for example, a more stable predetermined, desired and/or selected mechanical damping of the mechanical structure.
Abstract:
Thermally induced frequency variations in a micromechanical resonator are actively or passively mitigated by application of a compensating stiffness, or a compressive/tensile strain. Various composition materials may be selected according to their thermal expansion coefficient and used to form resonator components on a substrate. When exposed to temperature variations, the relative expansion of these composition materials creates a compensating stiffness, or a compressive/tensile strain.
Abstract:
There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a compensated microelectromechanical oscillator, having a microelectromechanical resonator that generates an output signal and frequency adjustment circuitry, coupled to the microelectromechanical resonator to receive the output signal of the microelectromechanical resonator and, in response to a set of values, to generate an output signal having second frequency. In one embodiment, the values may be determined using the frequency of the output signal of the microelectromechanical resonator, which depends on the operating temperature of the microelectromechanical resonator and/or manufacturing variations of the microelectromechanical resonator. In one embodiment, the frequency adjustment circuitry may include frequency multiplier circuitry, for example, PLLs, DLLs, digital/frequency synthesizers and/or FLLs, as well as any combinations and permutations thereof. The frequency adjustment circuitry, in addition or in lieu thereof, may include frequency divider circuitry, for example, DLLS, digital/frequency synthesizers (for example, DDS) and/or FLLs, as well as any combinations and permutations thereof.
Abstract:
There are many inventions described and illustrated herein. In one aspect, present invention is directed to a thin film or wafer encapsulated MEMS, and technique of fabricating or manufacturing a thin film or wafer encapsulated MEMS employing the anti-stiction techniques of the present invention. In one embodiment, after encapsulation of the MEMS, an anti-stiction channel is formed thereby providing “access” to the chamber containing some or all of the active members or electrodes of the mechanical structures of the MEMS. Thereafter, an anti-stiction fluid (for example, gas or gas-vapor) is introduced into the chamber via the anti-stiction channel. The anti-stiction fluid may deposit on one, some or all of the active members or electrodes of the mechanical structures thereby providing an anti-stiction layer (for example, a monolayer coating or self-assembled monolayer) and/or out-gassing molecules on such members or electrodes. After introduction and/or application of the anti-stiction fluid, the anti-stiction channel may be sealed, capped, plugged and/or closed to define and control the mechanical damping environment within the chamber. In this regard, sealing, capping and/or closing the chamber establishes the environment within the chamber containing and/or housing the mechanical structures. This environment provides the predetermined, desired and/or selected mechanical damping of the mechanical structure as well as suitable hermeticity. The parameters (for example, pressure) of the final encapsulated fluid (for example, a gas or a gas vapor) in which the mechanical structures are to operate may be controlled, selected and/or designed to provide a desired and/or predetermined operating environment.
Abstract:
There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device having mechanical structures and anchors to secure the mechanical structures to the substrate. The anchors of the present invention are comprised of a material that is relatively unaffected by the release processes of the mechanical structures. In this regard, the etch release process are selective or preferential to the material(s) securing the mechanical structures in relation to the material comprising the anchors. Moreover, the anchors of the present invention are secured to the substrate in such a manner that removal of the insulation layer has little to no affect on the anchoring of the mechanical structures to the substrate.
Abstract:
A micromachined accelerometer for measuring acceleration in a direction parallel with the plane of the accelerometer substrate. The accelerometer has a strain-isolation pedestal, a flexure attached to the pedestal, and a proof mass attached to the flexure. The pedestal is wider than the flexure and does not bend when the device is under acceleration. The pedestal serves to isolate the flexure from substrate strain which may be caused by device packaging or temperature variations. Preferably, the joint between the pedestal and flexure, and the joint between the flexure and proof mass are smoothed to prevent stress concentration. The joints have a radius of curvature of at least 1 micron. A piezoresistor is located in one sidewall of the flexure. Alternatively, two piezoresistors are located on the flexure, with one on each sidewall. In this embodiment, a center-tap connection is provided to the point where the two piezoresistors are connected. The present invention includes devices having two accelerometers with Large proof masses and two reference accelerometers having very small proof masses. The four accelerometers are electrically connected in a wheatstone bridge circuit. Also, in the embodiment having two piezoresistors on one flexure, two accelerometers (with a total of four piezoresistors) are electrically connected in a Wheatstone bridge circuit to provide accurate acceleration sensing.
Abstract:
The present inventions, in one aspect, are directed to a temperature sensing apparatus comprising a micromachined thermistor configured to output voltage and/or current signals which are/is correlated to an ambient temperature. The micromachined thermistor includes a micromachined thermistor structure suspended over and released from the substrate, wherein the micromachined thermistor structure includes a temperature dependent characteristic (e.g., resistance to an electrical current), and electrical contacts connected to the micromachined thermistor structure, wherein the electrical contacts are adapted to conduct the voltage and/or current signals. The apparatus, in one aspect, includes measurement circuitry, to generate data which is representative of the ambient temperature using the electrical resistance of the micromachined thermistor structure.