Abstract:
The invention relates to a lithography system, for example for projecting an image or an image pattern on to a target (1) such as a wafer, said target being included in said system by means of a target table (2), clamping means being present for clamping said target on said table. Said clamping means comprises a layer or stationary liquid (3), included at such thickness between target and target table that, provided the material of the liquid (C) and of the respective contacting faces (A, B) of the target (1) and target table (2), a pressure drop (PCap) arises.
Abstract:
A lens element of a charged particle system comprises an electrode having a central opening. The lens element is configured for functionally cooperating with an aperture array that is located directly adjacent said electrode, wherein the aperture array is configured for blocking part of a charged particle beam passing through the central opening of said electrode. The electrode is configured to operate at a first electric potential and the aperture array is configured to operate at a second electric potential different from the first electric potential. The electrode and the aperture array together form an aberration correcting lens.
Abstract:
Method of manufacturing electronic devices using a maskless lithographic exposure system using a maskless pattern writer, wherein beamlet control data is generated for controlling the maskless pattern writer to expose a wafer for creation of the electronic devices. The beamlet control data is generated based on design layout data defining a plurality of structures, such as vias, for the electronic devices to be manufactured from the wafer, and selection data defining which of the structures of the design layout data are applicable for each electronic device to be manufactured from the wafer, the selection data defining a different set of the structures for different subsets of the electronic devices. Exposure of the wafer according to the beamlet control data results in exposing a pattern having a different set of the structures for different subsets of the electronic devices.
Abstract:
The invention relates to an alignment apparatus for aligning a substrate, and a substrate processing system comprising such alignment apparatus. The alignment apparatus comprises an alignment base for supporting said substrate and/or a substrate support member, and a force generating device for applying a contact force on said substrate.The force generating device comprises: an arm comprising a rigid proximal end and a rigid distal end, said distal end being provided with a contact section for contacting an edge of said substrate, and an elastically deformable arm section extending between the proximal and distal ends, a connection part connecting said proximal end to said alignment base, said arm being movable with respect to said alignment base via said connection part, and an actuator for causing a displacement of said proximal end, whereby said contact force, defined by said elastically deformable arm section, is applied to said substrate by said contact section.
Abstract:
The invention relates to a invention relates to a method and decoding device for receiving an input bit-stream comprising a sequence of n-bit pattern symbols as well as a unique n-bit comma symbol for synchronization, and for generating therefrom a synchronized output comprising a sequence of m-bit pattern words, with m
Abstract:
The invention relates to a method for determining a beamlet position in a charged particle multi-beamlet exposure apparatus. The apparatus is provided with a sensor comprising a conversion element for converting charged particle energy into light and a light sensitive detector. The conversion element is provided with a sensor surface area provided with a 2D-pattern of beamlet blocking and non-blocking regions. The method comprises taking a plurality of measurements and determining the position of the beamlet with respect to the 2D-pattern on the basis of a 2D-image created by means of the measurements. Each measurement comprises exposing a feature onto a portion of the 2D-pattern with a beamlet, wherein the feature position differs for each measurement, receiving light transmitted through the non-blocking regions, converting the received light into a light intensity value, and assigning the light intensity value to the position at which the measurement was taken.
Abstract:
The invention relates to a multi-axis differential interferometer (1) for measuring a displacement and/or rotation between a first reflective surface (21, 321) and a second reflective surface (81, 381), wherein said measuring is carried out using at least two pairs of beams, wherein each pair is formed by a measurement beam (Mb) to be emitted onto a first one (21, 321) of said reflective surfaces, and a reference beam (Rb) to be emitted onto another one (81, 381) of said reflective surfaces, said interferometer (1) comprising: a first optical module (20) and a second optical module (40), wherein each optical module (20, 40) is configured for receiving a respective coherent beam and for creating one of said pairs therefrom. The invention further relates to a lithography system comprising such an interferometer and to a method for assembling such a multi-axis differential interferometer.
Abstract:
The invention relates to a support structure and support module, for instance for use in a lithography system, comprising a frame and a support for supporting a load, wherein said support is moveable relative to said frame, said support structure further comprising a force compensation spring assembly connecting said support to said frame for at least partially supporting said support and/or said load, wherein said force compensation spring assembly comprises a first spring having a negative stiffness characteristic over a predefined range of motion of said spring, and a second spring having a positive stiffness.
Abstract:
The invention relates to a target processing unit (10) comprising a vacuum chamber (30) for accommodating a target to be processed, a projection column (46) within the vacuum chamber for generating a beam and projecting the beam towards the target, and a first conduit arrangement (26,36,37,60) for connecting the projection column to external equipment (22). The vacuum chamber can comprise a positioning system (114) for supporting the target, and a second conduit arrangement (110) distinct from the first conduit arrangement for connecting the positioning system to external equipment, wherein the positioning system is moveably arranged with respect to the projection column, and wherein the positioning system and the projection column occupy spatially distinct portions of the vacuum chamber. The first conduit arrangement extends through an upper side of the vacuum chamber, and the second conduit arrangement extends through a lower side of the vacuum chamber.
Abstract:
Cabinet (10) for accommodating electronic equipment (46). The cabinet comprises a casing (12) with an access opening (24) at a access side (23), and a second side (17) opposite to the access side, an electronic equipment rack (40a), a first plenum space (35) between the access side and the rack, and a channel (36) in fluid communication with the second side and the first plenum space. The cabinet encloses a first cooling medium (27) that is in thermal communication with the electronic equipment. A cooling arrangement (29) is provided at the second side, which comprises a flow generator (30) for generating a flow (Φf) of the first cooling medium from the first plenum space across the electronic equipment toward the second side, and a heat exchanger (31) for extracting heat from the first cooling medium. The first cooling medium is subsequently recirculated through the channel to the first plenum space.