Abstract:
This is directed to methods and apparatus for shielding a circuitry region of an electronic device from interference (e.g., EMI). A conductive dam may be formed about a periphery of the circuitry region. A non-conductive or electrically insulating fill may then be applied to the circuitry region within the dam. Next, a conductive cover may be applied above the fill. The cover may be electrically coupled to the dam. The dam may include two or more layers of conductive material stacked on top of one another. In some embodiments, the conductive cover may be pad printed or screen printed above the fill. In other embodiments, the conductive cover may be a conductive tablet that is melted above the fill.
Abstract:
Printed circuit boards are provided with embedded components. The embedded components may be mounted within recesses in the surface of a printed circuit board substrate. The printed circuit board substrate may have grooves and buried channels in which wires may be mounted. Recesses may be provided with solder pads to which the wires may be soldered or attached with conductive adhesive. An integrated switch may be provided in an opening within a printed circuit board substrate. The integrated switch may have a dome switch member that is mounted within the opening. A cover member for the switch may be formed from a flexible layer that covers the dome switch member. Terminals for the integrated switch may be formed from conductive structures in an interior printed circuit board layer. Interconnects may be used to electrically connect embedded components such as switches, integrated circuits, solder pads for wires, and other devices.
Abstract:
Examples are disclosed herein that relate to curved batteries. One example provides a battery comprising an anode arranged on an anode substrate, a cathode arranged on a cathode substrate, the anode substrate being curved at a first curvature and the cathode substrate being curved at a second curvature, and a separator between the anode and the cathode. A thickness of the anode substrate and a thickness of the cathode substrate are determined based on the curvature of the respective substrate, such that the one of the anode substrate and the cathode substrate with a larger curvature has a larger thickness.
Abstract:
An apparatus including a palette body, a plurality of heat distribution plates mounted on the body and positioned adjacent each other, a plurality of insulators positioned intermediate the adjacently positioned heat distribution plates, and a plurality of thermal camera calibration reference swatches including a near-ideal blackbody reference swatch, a diffuse reflective reference swatch, and a first material of the device under testing reference swatch, each reference swatch being mounted on a corresponding one of the heat distribution plates and thermally insulated from other reference swatches by the insulators.
Abstract:
A metal encased multilayer stack of graphite sheets used as a passive thermal conductor. In the stack, each sheet has a plane high thermal conductivity along a first axis and a plane of lower thermal conductivity along a second axis. The stack is created to have a three-dimensional shape including a length and a width, and the first axis is aligned parallel to said length, the multilayer stack having a height less than the width. A first metal structure surrounds the multilayer stack of graphite sheets, with the metal structure encasing the multilayer stack along the length, width and height of the multilayer stack.
Abstract:
The technology provides an optical mounting structure adapted for a head mounted display. The structure is configured to support heat producing electronic components on an interior surface, the structure including frame elements having an exterior surface. At least one bonded graphite layer thermally coupled to the electronic components and at least partially mounted to an exterior surface of the optical mounting structure. The graphite may be adhesively bonded to the surface of the mounting structure. A frame region is adapted to contain heat producing electronic components and first and second structural components extending away from the frame region. First and second graphite layers are thermally coupled to the electronic components, one of said first and second graphite layers bonded to an exterior surface of each structural component. A method of fabricating the structure is also provided.
Abstract:
An optical mount includes a frame adapted to support display optical systems and heat emitting electronic components. The mount includes a first portion housing the electronic components and one or more support components extending away from the electronic components. The one or more support components may include temple arms adapted to support the frame on the head of a wearer of the optical mount. The frame may be comprised of a thermally conductive material coupled to the electronic components. The support components include a first side and a second side, and at least one void positioned between the first side and the second side adapted to convey heat away from the electronic components. The void may define a bifurcated region in the support component.
Abstract:
This is directed to methods and apparatus for shielding a circuitry region of an electronic device from interference (e.g., EMI). A conductive dam may be formed about a periphery of the circuitry region. A non-conductive or electrically insulating fill may then be applied to the circuitry region within the dam. Next, a conductive cover may be applied above the fill. The cover may be electrically coupled to the dam. The dam may include two or more layers of conductive material stacked on top of one another. In some embodiments, the conductive cover may be pad printed or screen printed above the fill. In other embodiments, the conductive cover may be a conductive tablet that is melted above the fill.
Abstract:
This is directed to methods and apparatus for shielding a circuitry region of an electronic device from interference (e.g., EMI). A conductive dam may be formed about a periphery of the circuitry region. A non-conductive or electrically insulating fill may then be applied to the circuitry region within the dam. Next, a conductive cover may be applied above the fill. The cover may be electrically coupled to the dam. The dam may include two or more layers of conductive material stacked on top of one another. In some embodiments, the conductive cover may be pad printed or screen printed above the fill. In other embodiments, the conductive cover may be a conductive tablet that is melted above the fill.