Abstract:
Various techniques are provided for calibrating a thermal imaging device using a non-contact temperature sensor. In one example, a method includes capturing a thermal image of a scene. The thermal image comprises a plurality of pixel values. The method also includes detecting, by a non-contact temperature sensor, a temperature value associated with a portion of the scene corresponding to a subset of the pixel values. The method also includes comparing the subset of pixel values with the detected temperature value. The method also includes generating a correction term based on the comparing. The method also includes applying the correction term to at least the subset of pixel values to radiometrically calibrate the subset of pixel values. Related systems and alignment processes are also provided.
Abstract:
A method for measuring intensity distribution of light includes a step of providing a carbon nanotube array having a top surface. The carbon nanotube array is located in an inert gas environment or a vacuum environment. A light source irradiates the top surface of the carbon nanotube array, to make the carbon nanotube array radiate a radiation light. An imaging element images the radiation light, to obtain an intensity distribution of the light source.
Abstract:
The present invention provides a measuring method and a measuring system that are capable of accurately measuring the surface temperature of a surface to be measured, without being influenced by the emissivity distribution of the surface to be measured. A surface to be measured that has an emissivity distribution, a radiometer that measures a radiance distribution of the surface to be measured, and an auxiliary heat source installed in a specular reflection position from the radiometer with respect to the surface to be measured are prepared, radiances of two places having different emissivities of the surface to be measured are measured at two different auxiliary-heat-source temperatures, a reflectance ratio of the two places having the different emissivities is calculated on the basis of two measured radiances of the two places having the different emissivities, and temperature of the surface to be measured is obtained using the reflectance ratio and the measured radiances of the two places having the different emissivities.
Abstract:
A temperature measuring method has the steps of (a) coating a mixture of fluorescent dye on a surface of the micro device, (b) heating the micro device with a calibration heater, (c) acquiring an emission intensity image of the mixture with a camera by illuminating the surface of the micro device with a light, (d) averaging the emission intensity image by units of a plurality of pixels, (e) calculating a temperature calibration curve indicating a change of the emission intensity with respect to the temperature, from the image averaged by units of a plurality of pixels, and (f) removing the calibration heater, acquiring an emission intensity image by actually driving the micro device, and converting the acquired emission intensity image into a temperature, using the temperature calibration curve. According to the method, the temperature calibration curve is obtained through the averaged emission intensity image, and a temperature field on the micro device is measured using the temperature calibration curve. Thus, the emission intensity of fluorescent dye can correct a deviation occurring between each pixel of the image, thereby making it possible to precisely measure the temperature field in microscale.
Abstract:
A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.
Abstract:
A thermal radiation sensor is joined with a shutter that is adapted for reversible interruption of radiation from an object to the sensor. The shutter includes an integral electrically operated heater for maintaining a portion of the shutter at a predetermined temperature as a thermal reference for the sensor. The sensor is alternatively exposed to radiation from the object and the thermal reference portion of the shutter, and provides a first signal representative of the radiation that it receives from the object and a second signal representative of the radiation that it receives from the reference portion. An electronic circuit is connected to the sensor for receiving the first and second signals, for calculating the temperature of the object, and for providing a signal representative of the calculated temperature.
Abstract:
An improved method and apparatus are disclosed for calibrating the emissivity characteristics of a semiconductor wafer within a processing chamber by supporting a sample wafer on a graphite susceptor within the chamber and by comparing the temperature measured within the susceptor in close proximity to the center of the wafer with the temperature measured by the emission of radiation from the surface of the wafer through the walls of the processing chamber. Temperature measurements subsequently made from the radiation emitted from the surface of similar wafers are corrected with reference to the measurement made of the temperature within the susceptor on the sample wafer.
Abstract:
When a steel sheet or the like is heated in a furnace to a temperature somewhat higher than the room temperature and is still or moved, its temperature can be measured by detecting the radiant energy therefrom. The measurement is normally difficult due to the influence of background noise of radiant energy from the surroundings, change of the transmittance factor of the environment or atmosphere for radiant energy, and change of the emissivity of the object to be measured. In order to remove such causes of errors and to correctly measure the temperature by detecting radiant energy, a radiometer and a black body radiator are disposed symmetrically and specularly with respect to the normal to a surface of an object to be measured, and two different amounts of radiant energies are emitted from the black body radiator, and the emissivity of the object to be measured is determined from the detected values from the radiometer, the two temperature values of the black body radiator, and the diffusely reflecting factor associated with the object to be measured, whereby correct measurement of the surface temperature of the object to be measured can be done. Embodiments for implementing this method are proposed.
Abstract:
A method for measuring the differential emissivity between two sites on the surface of a body and the temperature of the two sites. The method includes a plurality of measurements of the infrared radiation arising from each of the two sites under a number of different conditions. Some of the measurements include irradiation by external infrared radiation at a known wavelength and intensity. The infrared radiation arising from each of the sites may include emitted radiation, reflected ambient radiation, and reflected external radiation. Additionally, the temperature determined using the method described can be used to calibrate infrared imaging devices used to inspect the entire body.