Abstract:
A device for printing a droplet onto a substrate includes: a droplet generating member which is needle-shaped and comprises a receiving portion disposed vertically to receive a solution, and a discharge hole connected to the receiving portion and formed on a bottom of the receiving portion so that the solution can be discharged from the receiving portion; a substrate disposed below the droplet generating member, the substrate includes a target portion to which the droplet discharged from the discharge hole of the droplet generating member is dropped and attached; a voltage applier applying a voltage to the droplet so that the droplet can be dropped onto the target portion of the substrate; a volume measuring unit measuring the volume of the droplet; and a droplet control unit maintaining the volume of the droplet at a predetermined level based on the measured volume of the droplet.
Abstract:
Provided are a microfluidic chip and a microfluidic manipulating apparatus including the same. The microfluidic chip includes at least one microfluidic manipulating unit formed in a substrate. The microfluidic manipulating unit includes: a plurality of microchannels formed in the substrate; an inlet formed at a first end of the microchannel and exposed through the substrate; a trap formed at the microchannel; a chamber connected to a second end of the microchannel; and an outlet connected to the chamber and exposed through the substrate.
Abstract:
A novel hydrogel copolymer, a substrate coated with the copolymer, a method of producing a microarray using the copolymer, and a microarray produced by the method are provided. The use of the hydrogel copolymer makes efficient removal of protein and high integration of nucleic acid and protein on a substrate for a microarray possible.
Abstract:
Disclosed is a fabrication method of UBM for flip chip interconnections of a semiconductor device, consisting of dipping a patterned wafer into a plating solution containing materials supplying nickel and copper ions, forming a copper layer at a predetermined current density for connection between a chip pad and a solder bump and for residual stress-buffering, and forming a nickel-copper alloy layer at an increased current density for prevention of diffusion between the solder and the pad. The method is advantageous in terms of low fabrication cost due to not requiring an etching process, while meeting the conditions of wettability, diffusion-barrier function and small residual stress required to form UBM on the patterned wafer.
Abstract:
An efficient and accurate method of identifying a target biomolecule in a sample by using target molecule-probe binding frequencies is disclosed.
Abstract:
A fluid reaction device includes a microfluidic reaction chip which accommodates a fluid, a heater, and a heat transfer facilitating layer which is interposed between the microfluidic reaction chip and the heater, the heat transfer facilitating layer has a higher thermal conductivity than air and can hold particles, wherein formation of an air layer can be prevented.
Abstract:
An efficient and accurate method of identifying a target biomolecule in a sample by using target molecule-probe binding frequencies is disclosed.
Abstract:
An apparatus separating a polarizable analyte using dielectrophoresis includes a vessel including a membrane having a plurality of nano- to micro-sized pores, the membrane disposed inside the vessel, electrodes generating spatially non-uniform electric fields in the nano- to micro-sized pores of the membrane when an AC voltage is applied to the electrodes, and a power source applying the AC voltage to the electrodes, wherein a sectional area of the pores varies along a depth of the pores. A method of separating a polarizable material uses the apparatus.
Abstract:
A kit including a target sequence-binding protein and a method of detecting a target nucleic acid by using the kit that may ensure efficient detection of the target nucleic acid in a biological sample are disclosed.
Abstract:
A multi-channel fluorescence measuring optical system and a multi-channel fluorescence sample analyzer using the optical system are provided. The multi-channel fluorescence measuring optical system, which irradiates light onto a plurality of sample channels and detecting fluorescence radiated from samples, includes: a light source; an integrator for giving the light irradiated from the light source a uniform intensity distribution; a sample holder having a plurality of sample channels on which the samples are mounted, wherein the samples are exited by the light emitted from the integrator; and a beam splitter between the integrator and the sample holder for dividing the incident light in a predetermined ratio. Since the light intensities of fluorescence images are detected using optical fiber bundles and photodiodes, the manufacturing cost can be greatly reduced, and the optical system can be miniaturized.