Abstract:
A manufacturing method of display array substrate is provided. The method includes depositing a first metal layer on a substrate and defining a peripheral area and a display area, coating a photo-resist layer on the first metal layer located in the peripheral area, anodizing the first metal layer to a first metal oxide layer with the photo-resist layer as a mask, patterning the first metal oxide layer located in the display area to a gate insulator, removing the photo-resist layer to expose the first metal layer in the peripheral area, forming a channel layer on the gate insulator, and depositing a second metal layer and patterning the second metal layer located in the display area to form a source electrode and a drain electrode.
Abstract:
A thin film transistor (TFT) array substrate includes a first substrate, a plurality of TFTs formed on the first substrate, a color filter layer covered on the TFTs, and a plurality of pixel electrodes corresponding to the TFTs. The color filter layer is directly formed on the TFTs. The color filter layer includes a plurality of photoresist units. Each of the pixel electrodes is to electrically connected to a drain of the TFT via an opening.
Abstract:
A method for forming a TFT includes providing a substrate, a gate electrode on the substrate, an electrically insulating layer on the substrate to totally cover the gate electrode, a channel layer on the electrically insulating layer, a first photoresist pattern on the channel layer, a metal layer on the electrically insulating layer, the channel layer and the first photoresist layer, and a second photoresist pattern on the metal layer. A middle portion of the metal layer is then removed to form a source electrode and a drain electrode and to expose the first photoresist pattern and a portion of the channel layer between the first and second photoresist patterns. The exposed portion of the channel layer is then processed to have its electrical conductivity be lowered to thereby reduce a hot-carrier effect of the channel layer.
Abstract:
A color filter includes a first filtering part and a number of first quantum dot particles formed in the first filtering part. A color of the first filtering part is a first primary color. The first quantum dot particles convert a light having a wavelength less than a wavelength of the first primary color to a light with the first primary color.
Abstract:
A color filter of display panel for converting dual band white backlight to light with three-primary colors. The color filter includes a plurality of first filtering parts, a plurality of second filtering parts, and a plurality of quantum dot blocks. The first filtering parts have a first primary color and allow light having a first wavelength corresponding to the first primary color to pass therethrough. The second filtering parts have a second primary color and selectively allow light having a second wavelength corresponding to the second primary color to pass therethrough. The quantum dot block converting light having a wavelength smaller than a third wavelength corresponding to a third primary color to light having the second wavelength.
Abstract:
An organic light emitting diode (OLED) package includes a substrate, an OLED die mounted on the substrate and an encapsulation layer encapsulating the OLED die. The OLED package further includes a protecting layer formed on the OLED die. The encapsulation layer has a multi-layered structure and is deposited on the protecting layer. Refractive indexes of a cathode of the OLED die, the protecting layer and the encapsulation layer are gradually decreased in the sequence. A barrier layer for blocking moisture from entering the OLED package is formed on a bottom surface of the substrate by atomic layer deposition (ALD) method. The present disclosure also provides a method for manufacturing the OLED package.
Abstract:
A thin film transistor includes a gate electrode, a channel layer, a source electrode, and a drain electrode. The channel layer is made of an amorphous oxide semiconductor. The channel layer includes one high oxygen ion concentration region, or two high oxygen ion concentration regions one above the other. An oxygen ion density of each high oxygen ion concentration region is in a range of from about 1×1018 to about 1×1021 per cubic centimeter. A thin film transistor substrate and a method of manufacturing the thin film transistor substrate are also provided.
Abstract:
A touch display device includes a first substrate, a second substrate, a number of first sensing electrodes formed on the first substrate, a number of second sensing electrodes formed on the second substrate, a touch integrated circuit set on the first substrate, and a number of connecting wires formed on the first substrate. The touch integrated circuit includes a number of first pins correspondingly connected to the first sensing electrodes and a number of second pins correspondingly connected to the second sensing electrodes. The connecting wires correspondingly connect two opposite terminals of the first sensing electrodes with two opposite ends of the first pins. A part of connectint wires are arranged between the first pins and the second pins. The first substrate includes a shielding sheet formed in the first substrate and located above the part of the connecting wires arranged between the first pins and the second pins.
Abstract:
An image compensating portion located on a display panel includes a light incident surface, a light emitting surface, and a plurality of light guiding channels parallel with each other. The display panel includes a main display region and a periphery display region. A projection of the light emitting surface on the light incident surface is larger than an area of the light incident surface. The light guiding channel guides lights from the light incident surface to be emitted from the light emitting surface for being extended.
Abstract:
A display includes a display panel, an image compensating portion, and a backlight module. The display panel includes a main display region and a periphery display region outside the main display region. The image compensating portion corresponding to the periphery display region includes a plurality of light guiding channels. The backlight module provides lights to the display panel. The backlight module comprises a plurality of first light collecting module. The first light collecting module focuses lights emitted from a first direction on a first light collecting axis parallel with an axis of the light guiding channel. The first direction is perpendicular to a first plane parallel with the display panel.