Abstract:
Optical constructions are disclosed. A disclosed optical construction includes a reflective polarizer layer, and an optical film that is disposed on the reflective polarizer layer. The optical film has an optical haze that is not less than about 50%. Substantial portions of each two neighboring major surfaces in the optical construction are in physical contact with each other. The optical construction has an axial luminance gain that is not less than about 1.2.
Abstract:
Methods of forming laminating adhesive articles include providing a multi-layer article, and a tool with a structured surface. The multi-layer articles include a substrate, an adhesive layer, and a liner. The multi-layer article is placed between the structured surface of the tool and a support surface that is hard and the tool is embossed against the liner by applying pressure or pressure/heat. The embossing causes the tool structures to distort the liner and the adhesive layer, and causes permanent topological changes in a portion of the adhesive layer, but does not distort the substrate. The distortion in the liner is retained upon release of the applied pressure. The portions of topologically changed adhesive can form convex structures that are permanent. Upon removal of the liner from the adhesive layer, the concave structures on the adhesive layer are unstable, but the convex structures are stable.
Abstract:
The present disclosure describes nanostructured light extraction color filter laminates, and articles and methods of using nanostructured light extraction color filter laminates for the fabrication of an OLED including a nanostructure, using lamination techniques. Nanostructured OLED devices can exhibit enhanced light extraction efficiency. The methods involve transfer and/or replication of a film, layer, or coating in order to form a nanostructured surface that is in optical contact with the emitting surface of an OLED in, for example, a top emitting or a bottom emitting active matrix OLED (TE-AMOLED or BE-AMOLED) device. The articles having enhanced light extraction efficiency can be of particular use in color-by-white (CBW) OLED displays, which use white-light spectrum OLEDs with a color filter array.
Abstract:
A method of making patterned structured solid surfaces is disclosed that includes filling a structured template with backfill material to produce a structured transfer film, patternwise curing the backfill material to produce cured areas and uncured areas in the structured transfer film, and laminating the structured transfer film to a receptor substrate. The structured template is capable of being removed to form structured and unstructured backfill layers. The structured and unstructured backfill layers may then be blanket cured. The backfill layer can include at least two different materials, one of which can be an adhesion promotion layer. In some embodiments the backfill layer includes a silsesquioxane such as polyvinyl silsesquioxane. The structured transfer film is a stable intermediate that can be covered temporarily with a release liner for storage and handling.
Abstract:
Pillar delivery films for vacuum insulated glass units are disclosed. The delivery films include a support film or pocket tape, a sacrificial material on the support film, and a plurality of pillars. The pillars are at least partially embedded in the sacrificial material or formed within sacrificial material molds, and the sacrificial material is capable of being removed while leaving the pillars substantially intact. Methods of transferring pillars to a substrate using the pillar delivery films are disclosed. In order to make an insulated glass unit, the delivery films are laminated to a receptor such as a glass pane, and the support film and sacrificial material are removed to leave the pillars remaining on the glass.
Abstract:
A microstructured article includes a nanovoided layer having opposing first and second major surfaces, the first major surface being microstructured to form prisms, lenses, or other features. The nanovoided layer includes a polymeric binder and a plurality of interconnected voids, and optionally a plurality of nanoparticles. A second layer, which may include a viscoelastic layer or a polymeric resin layer, is disposed on the first or second major surface. A related method includes disposing a coating solution onto a substrate. The coating solution includes a polymerizable material, a solvent, and optional nanoparticles. The method includes polymerizing the polymerizable material while the coating solution is in contact with a microreplication tool to form a microstructured layer. The method also includes removing solvent from the microstructured layer to form a nanovoided microstructured article.
Abstract:
Methods for transferring nanoparticles and nanowires to permanent glass receptors using transfer films. The transfer films include nanoparticles within a sacrificial material having a structured backfill layer on a substrate and a nanowire formulation between sacrificial substrates. To transfer the nanoparticles, the transfer film is laminated to a glass receptor, the substrate is removed, and the sacrificial material is baked-out to leave the nanoparticles aligned within the structured surface of the backfill layer on the glass receptor. To transfer the nanowires, the transfer film is laminated to a glass receptor, and the sacrificial substrates are baked-out to leave the nanowires aligned on the glass receptor.