Abstract:
An example of an optical accessory configured to produce an optical image depicting spectral characteristics of light. The produced optical image is captured by an image capture sensor of a mobile device. The captured image is processed by the mobile device to produce a measured value corresponding to a lighting-related parameter.
Abstract:
A lighting device obtains data related to objects and boundaries in an area in the vicinity of the lighting device, and a user wearable device provides a display (e.g. an augmented reality display based on the data related to the objects and the area boundaries) for a user/wearer. The lighting device includes a mapping sensor that collects data related to the objects and boundaries in the area. The user wearable device includes a camera or other optical sensor and wireless communication capability. The user wearable device is provided with mapping data that is presented on a display of the user wearable device. The communications and display capabilities allow the user wearable device to obtain room mapping information related to area in the vicinity of the lighting device in order to provide navigational assistance to a visually impaired person in the area.
Abstract:
An exemplary lighting system utilizes intelligent system elements, such as lighting devices, user interfaces for lighting control or the like and possibly sensors, and utilizes network communication amongst such intelligent system elements. Some processing functions performed within the system are implemented on a distributed processing basis, by two or more of the intelligent elements of the lighting system. Distributed processing, for example, may enable use of available processor and/or memory resources of a number of intelligent system elements to process a particular job. Another distributed processing approach might entail programming to configure two or more of the intelligent system elements to implement multiple instances of a server functionality with respect to client functionalities implemented on intelligent system elements.
Abstract:
Networked intelligent lighting devices and other elements connected to the network of a lighting system are readily adaptable to desirable networking arrangements as well as logical functional groups, for example by each storing communication provisioning data and/or configuration data for logically associating system elements into one or more groupings or sub-networks. The exemplary systems and system elements may also enable such enhanced network arrangement via autonomous discovery and device commissioning.
Abstract:
An example lighting device includes a luminaire having an illumination light source including an illumination light source configured to be driven by electrical power to emit incoming light rays. Luminaire further includes a polarization selective optic coupled to the illumination light source to receive the incoming light rays emitted by the illumination light source and output polarized light rays for illumination lighting. Based on the incoming light rays, the polarization selective optic outputs the polarized light rays including a TM wave. Polarization selective optic steers the TM wave to be outputted to a far field at a grazing angle. Polarization selective optic steers a substantially non-TM wave away from the far field at the grazing angle. Lighting device further includes an illumination light source driver to control a light source operation of the illumination light source.
Abstract:
An example luminaire includes a laser light source, a photoluminescent material and a holographic optical element. The holographic optical element has a hologram optically coupled to the laser light source and to the photoluminescent material. The hologram is configured to distribute light received from the laser light source as a pattern of light to the photoluminescent material.
Abstract:
A lighting system or method adaptively illuminates a face of an architectural panel. An example illumination system includes an optic and a pixel controllable array of solid state light emitters. When installed, the optic is aimed with its optical axis at an acute angle relative to a face of the panel. The array is coupled to selectively emit light from emitters at pixels of the array through the optic toward different regions of the face of the architectural panel. A controller is coupled to control the individual light emitters, via a driver of the emitters. The controller controls the emitters of the array so as to selectively control output intensity of the light emitters when emitting light through the optic toward selected regions of the face of the architectural panel, so as to adaptively illuminate surface topology features of the face of the architectural panel.
Abstract:
A tunable luminaire includes a laser light source and at least two different holograms. A beam of light is selectively directed from the laser light source to a first hologram in a first state of the luminaire to enable the luminaire to output light of a first characteristic. A beam of light is selectively directed from the laser light source to a second hologram in a second state of the luminaire to enable the luminaire to output light of a different second characteristic. For example, in the different states, different patterns of light from the holograms pass through and pump different photoluminescent materials, to produce luminaire light outputs in the different states having a different color characteristic. In other examples, in the different states, different patterns of light from the holograms pass through different elements or portions of an optical system to provide light outputs having different distributions.
Abstract:
Examples of lighting equipment provide services to and on behalf of a biomechatronically enhanced organism and/or a biomechatronic component of the organism. Such services include charging, communications, location-related services, control, optimization, client-server functions and distributed processing functionality. The biomechatronically enhanced organism and/or biomechatronic component utilize such services provided by and/or via the lighting equipment to enable, enhance or otherwise influence operation of the organism.
Abstract:
A light fixture may include a light source and an optical element, such as a light transmissive waveguide and/or a diffuser, having a surface forming a light output surface of the light fixture. The optical element is located to receive light from the source and is configured to supply the light for illumination, via the output surface. In an example of the fixture having a waveguide, the source is coupled to supply light to at least one of the lateral surfaces of the waveguide. At least the output surface of the optical element has a three-dimensional compound curvature and a perimeter that includes two or more edges connected at vertices.