Abstract:
The disclosure relates to methods of forming organic polymers comprising polyimide and layers comprising the same and to methods of reducing polyamic acid content of an organic polymer. The embodiments of the disclosure further relate to methods of fabricating semiconductor devices, to selectively depositing a material on a surface of a semiconductor substrate and to semiconductor processing assemblies. The methods are characterized by contacting a polyimide-containing material, such as a layer, with a modifying agent that increases the proportion of polyimide in the organic polymer material.
Abstract:
Disclosed are methods and systems for depositing layers including a p-type semiconducting oxide onto a surface of a substrate. The deposition process includes a cyclical deposition process. Exemplary structures in which the layers may be incorporated include 3D NAND cells, memory devices, metal-insulator-metal structured, and DRAM capacitors.
Abstract:
Methods and vapor deposition assemblies of selectively depositing dielectric material on a first surface of a substrate relative to a second surface of the substrate by a cyclic deposition process are disclosed. The methods comprise providing a substrate into a reaction chamber, performing a thermal deposition subcycle performing a thermal deposition subcycle to selectively deposit a first material on the first surface, performing a plasma deposition subcycle to selectively deposit a second material on the first surface; wherein at least one of the first material and the second material comprises silicon and oxygen.
Abstract:
A multiple-layer method for forming material within a gap on a surface of a substrate is disclosed. An exemplary method includes forming a layer of first material overlying the substrate and forming a layer of second (e.g., initially flowable) material within a region of the first material to thereby at least partially fill the gap with material in a seamless and/or void less manner.
Abstract:
A noble metal liner and a metal-insulator-metal (MIM) capacitor (MIMCAP) are described along with the methods of manufacture or fabrication. The MIM capacitor includes a liner formed of a thin layer or film of a noble metal, which is only a few nanometers thick, e.g., a thickness in the range of about 0.5 nm to about 5 nm or more. In a finished device such as a MIM capacitor, the noble metal liner is sandwiched between a thicker electrode and the insulator, e.g., a layer or thin film of high or ultra high-k material, thereby providing a cap for the electrode to limit leakage currents in the device.
Abstract:
Methods of forming thin-film structures including metal carbide material, and structures and devices including the metal carbide material are disclosed. Exemplary structures include metal carbide material formed using two or more different processes (e.g., two or more different precursors), which enables tuning of various metal carbide material properties, including resistivity, current leakage, and work function.
Abstract:
A process for depositing titanium aluminum or tantalum aluminum thin films comprising nitrogen on a substrate in a reaction space can include at least one deposition cycle. The deposition cycle can include alternately and sequentially contacting the substrate with a vapor phase Ti or Ta precursor and a vapor phase Al precursor. At least one of the vapor phase Ti or Ta precursor and the vapor phase Al precursor may contact the substrate in the presence of a vapor phase nitrogen precursor.
Abstract:
In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
Abstract:
In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
Abstract:
A method for forming a resistive random access memory (RRAM) device is disclosed. The method comprises forming a first electrode, forming a resistive switching oxide layer comprising a metal oxide by thermal atomic layer deposition (ALD), doping the resistive switching oxide layer with a metal dopant different from metal forming the metal oxide, and forming a second electrode by thermal atomic layer deposition (ALD), where the resistive switching layer is interposed between the first electrode and the second electrode. In some embodiments, forming the resistive switching oxide may be performed without exposing a surface of the switching oxide layer to a surface-modifying plasma treatment after depositing the metal oxide.