Abstract:
An exchange membrane unit includes a first separation membrane, a first space that is connected to a second space via the first separation membrane, a first path that supplies a first fluid (carrier gas) to the first space and supplies chemical substances, which have passed through the first separation membrane from the second space into the first space and diffused, to an ion detector using the first fluid discharged from the first space, and a first ionizing unit provided in the first space. It is possible to provide a preprocessing system that produces little pollution and enables an ion detector to operate with high sensitivity. The present invention can be applied to FAIMS.
Abstract:
A system for measurement is provided. The system includes a first optical path configured to supply first light pulses with a first range of wavelengths; a second optical path configured to supply second light pulses with a second range of wavelengths shorter than the first range of wavelengths; an optical I/O unit configured to emit the first light pulses and the second light pulses to a target and acquire a light from the target to detect CARS light pluses from the target by a detector; and a first phase modulating unit configured to vary phase differences between the first light pulses and the second light pulses as the first light pulses and the second light pulses are emitted via the optical I/O unit.
Abstract:
A device of detecting a current from a sensor is disclosed. The device includes an integrating circuit including a network of capacitors for providing a gain setting and configured to convert the current to a voltage ramp over a length of integration time, the integrating circuit further including a reset switch configured to connect an input and an output of the network of capacitors; an ADC configured to digitize the voltage ramp into a plurality of voltage samples; and a set of modules including an analyzing module configured to analyze the plurality of voltage samples to determine a slope of the voltage ramp; an outputting module configured to determine a magnitude of the current based on the slope of the voltage ramp and the gain setting; and a reconfiguring module that is configured to reconfigure the network of capacitors and reset the voltage ramp via the reset switch.
Abstract:
There is provided a gas analyzer apparatus that analyzes inflowing sample gas. The gas analyzer apparatus includes a filter unit that filters the sample gas, a detector unit that detects the result of filtering, a housing that houses these elements, and a control unit that controls the respective potentials of these elements. The control unit includes a cleaning control unit that sets the respective potentials of the filter unit, the detector unit, and the housing to cleaning potentials that draws in, as plasma for cleaning purposes, process plasma from a source that supplies the sample gas or plasma generated by a plasma generation unit.
Abstract:
An analyzer apparatus (1) includes: an ionization unit (11) that ionizes molecules to analyze; a filter unit (13) that forms a field for selectively passing ions generated by the ionization unit; a detector unit (14) that detects ions that have passed through the filter unit; an ion drive circuitry (61) that electrically drives the ionization unit; a field drive circuitry (62) that electrically drives the filter unit; and a control unit (22) that controls outputs of the ion drive circuitry and the field drive circuitry, wherein the control unit controls the ion drive circuitry to ramp up and down a filament voltage supplied to a filament of the ionization unit when the analyzer apparatus starts and stops.
Abstract:
A mass analyzer for scanning sample gases is disclosed. The mass analyzer comprises an ionizer for generating ions from a sample; a mass filter with an accumulator section integrated in the mass filter and accumulates filtered ions prior to ejecting from the mass filter; and an ion detector that is configured to detecting ejected ions from the mass filter. The mass filter may include a quadrupole array and the accumulator section includes an ion trap array.
Abstract:
An analyzer includes: an ionizer unit that ionizes molecules to be analyzed; a filter unit that selectively passes ions generated by the ionizer unit; and a detection unit that detects ions that have passed the filter unit. The detection unit includes a plurality of detection elements disposed in a matrix, and the analyzer further includes a first reconfiguration unit that switches between detection patterns including detection elements to be enabled for detection out of the plurality of detection elements. The ionizer unit includes a plurality of ion sources, and the analyzer further includes a driving control unit that switches the connections of the plurality of ion sources based on changes in characteristics of the ion sources.
Abstract:
There is provided an analyzer including: an ionizer unit that ionizes molecules to be analyzed; a filter unit that selectively passes ions generated by the ionizer unit; and a detection unit that detects ions that have passed the filter unit. The detection unit includes a plurality of detection elements disposed in a matrix, and the analyzer further includes a first reconfiguration unit that switches between detection patterns including detection elements to be enabled for detection out of the plurality of detection elements. The ionizer unit includes a plurality of ion sources, and the analyzer further includes a driving control unit that switches the connections of the plurality of ion sources based on changes in characteristics of the ion sources.