Abstract:
An optical module includes a carrier, a light source disposed on an upper side of the carrier, an optical sensor disposed on the upper side of the carrier, and a housing disposed on the upper side of the carrier over the light source and the optical sensor. The housing defines a first aperture exposing at least a portion of the light source and a second aperture exposing at least a portion of the optical sensor. An outer sidewall of the housing includes at least one singulation portion adjacent to the upper side of the carrier and perpendicular to the upper side of the carrier.
Abstract:
In one or more embodiments, a micro-electromechanical systems (MEMS) package structure comprises a MEMS die, a conductive pillar adjacent to the MEMS die, a package body and a binding layer on the package body. The package body encapsulates the MEMS die and the conductive pillar, and exposes a top surface of the conductive pillar. A glass transition temperature (Tg) of the package body is greater than a temperature for forming the binding layer (Tc).
Abstract:
A semiconductor device package includes a first circuit layer, at least one electrical element, a first molding layer, an electronic component and a second molding layer. The at least one electrical element is disposed over a first surface of the first circuit layer and electrically connected to the first circuit layer. The first molding layer is disposed over the first surface of the first circuit layer. The first molding layer encapsulates an edge of the at least one electrical element, and a lower surface of the first molding layer and a lower surface of the at least one electrical element are substantially coplanar. The electronic component is disposed over a second surface of the first circuit layer and is electrically connected to the first circuit layer. The second molding layer is disposed over the second surface of the first circuit layer and encapsulates the electronic component.
Abstract:
A package carrier includes: (a) a dielectric layer defining a plurality of openings; (b) patterned electrically conductive layer, embedded in the dielectric layer and disposed adjacent to a first surface of the dielectric layer; (c) a plurality of electrically conductive posts, disposed in respective ones of the openings, wherein the openings extend between a second surface of the dielectric layer to the patterned electrically conductive layer, the electrically conductive posts are connected to the patterned electrically conductive layer, and an end of each of the electrically conductive posts has a curved profile and is faced away from the patterned electrically conductive layer; and (d) a patterned solder resist layer, disposed adjacent to the first surface of the dielectric layer and exposing portions of the patterned electrically conductive layer corresponding to contact pads. A semiconductor package includes the package carrier, a chip, and an encapsulant covering the chip and the package carrier.
Abstract:
A semiconductor device package includes a carrier, a die, an encapsulation layer and a thickness controlling component. The die is disposed on the carrier, wherein the die includes a first surface. The encapsulation layer is disposed on the carrier, and encapsulates a portion of the first surface of the die. The encapsulation layer defines a space exposing another portion of the first surface of the die. The thickness controlling component is disposed in the space.
Abstract:
A device includes a die paddle and a plurality of leads. The leads surround the die paddle. Each of the leads includes an inner lead portion adjacent to and spaced apart from the die paddle, an outer lead portion opposite to the inner lead portion and a bridge portion between the inner lead portion and the outer lead portion. The inner lead portion has an upper bond section connected to the bridge portion and a lower support section below the upper bond section. A sum of a thickness of the upper bond section and a thickness of the lower support section is greater than a thickness of the bridge portion.
Abstract:
The present disclosure relates to a semiconductor substrate structure, semiconductor package and method of manufacturing the same. The semiconductor substrate structure includes a conductive structure, a dielectric structure and a metal bump. The conductive structure has a first conductive surface and a second conductive surface. The dielectric structure has a first dielectric surface and a second dielectric surface. The first conductive surface does not protrude from the first dielectric surface. The second conductive surface is recessed from the second dielectric surface. The metal bump is disposed in a dielectric opening of the dielectric structure, and is physically and electrically connected to the second conductive surface. The metal bump has a concave surface.
Abstract:
A semiconductor device package includes a first circuit layer having a first surface and a second surface opposite the first side, a first electronic component, a shielding element, a shielding layer and a molding layer. The first electronic component is disposed over the first surface of the first circuit layer, and electrically connected to the first circuit layer. The shielding element is disposed over the first surface of the first circuit layer, and is electrically connected to the first circuit layer. The shielding element is disposed adjacent to at least one side of the first electronic component. The shielding layer is disposed over the first electronic component and the shielding element, and the shielding layer is electrically connected to the shielding element. The molding layer encapsulates the first electronic component, the shielding element and a portion of the shielding layer.
Abstract:
A multilayer substrate includes a first outer conductive patterned layer, a first insulating layer exposing a portion of the first outer conductive patterned layer to define a first set of pads, a second outer conductive patterned layer, and a second insulating layer exposing a portion of the second outer conductive patterned layer to define a second set of pads. The multilayer substrate further includes inner layers each with an inner conductive patterned layer, multiple inner conductive posts formed adjacent to the inner conductive patterned layer, and an inner dielectric layer, where the inner conductive patterned layer and the inner conductive posts are embedded in the inner dielectric layer, and a top surface of each of the inner conductive posts is exposed from the inner dielectric layer.
Abstract:
An embodiment of a method for making semiconductor device packages includes a heat sink matrix and a substrate. A plurality of semiconductor devices is attached to the substrate. Then, a package body is formed between the heat sink matrix and the substrate, wherein the package body encapsulates the semiconductor devices. Then, a plurality of first cutting slots is formed, wherein the first cutting slots extend through the heat sink matrix and partially extend into the package body. Then, a plurality of second cutting slots is formed, wherein the second cutting slots extend through the substrate and through the package body to the first cutting slot, thereby singulating the heat sink matrix and substrate into a plurality of individual semiconductor device packages.