Abstract:
Methods and apparatus relating to micro-architectural energy monitor event-assisted temperature sensing are described. In one embodiment, at least one of a plurality of slices of a computational logic or at least one of a plurality of sub-slices of the computational logic are powered down or powered up based on a comparison of a temperature value, that is determined based on one or more micro-architectural events, and a threshold value. Other embodiments are also disclosed and claimed.
Abstract:
An apparatus and method for determining thread execution parallelism. For example, a processor in accordance with one embodiment comprises: a plurality of cores to execute a plurality of threads; a plurality of counters to collect data related to the execution of the plurality of threads on the plurality of cores; a dependency analysis module to analyze the data related to the execution of the threads and responsively determine a level of inter-thread dependency; and a control module to responsively adjust operation of the plurality of cores based on the determined level of inter-thread dependency.
Abstract:
In one embodiment an apparatus includes a multiplicity of processor components; one or more device components communicatively coupled to one or more processor components of the multiplicity of processor components; and a controller comprising logic at least a portion of which is in hardware, the logic to schedule one or more forced idle periods interspersed with one or more active periods, a forced idle period spanning a duration during which the multiplicity of processor components and the one or more device components are simultaneously placed in respective idle states that define a forced idle power state during isolated sub-periods of the forced idle period. Other embodiments are disclosed and claimed.
Abstract:
A method includes detecting a trigger condition, and in response to detecting the trigger condition, reducing a voltage applied to a graphics controller component of a memory controller. The reduction in voltage may cause the voltage to be reduced below a voltage level required to maintain context information in the graphics controller component.
Abstract:
Embodiments described herein provide techniques enable a graphics processor to continue processing operations during the reset of a compute unit that has experienced a hardware fault. Threads and associated context state for a faulted compute unit can be migrated to another compute unit of the graphics processor and the faulting compute unit can be reset while processing operations continue.
Abstract:
Embodiments of systems, apparatuses, and methods for energy efficiency and energy conservation including enabling autonomous hardware-based deep power down of devices are described. In one embodiment, a system includes a device, a static memory, and a power control unit coupled with the device and the static memory. The system further includes a deep power down logic of the power control unit to monitor a status of the device, and to transfer the device to a deep power down state when the device is idle. In the system, the device consumes less power when in the deep power down state than in the idle state.
Abstract:
Embodiments described herein provide techniques enable a compute unit to continue processing operations when all dispatched threads are blocked. One embodiment provides for a method comprising executing multiple concurrent threads on a processing resource of a graphics processor, during execution, detecting that each of the multiple concurrent threads of the processing resource are blocked from execution, selecting a victim thread from the multiple concurrent threads, and suspending the victim thread. The thread state is stored to a thread scratch space in memory along with a blocking event associated with the victim thread.
Abstract:
An apparatus to facilitate data prefetching is disclosed. The apparatus includes a memory, one or more execution units (EUs) to execute a plurality of processing threads and prefetch logic to prefetch pages of data from the memory to assist in the execution of the plurality of processing threads.
Abstract:
Methods and apparatus relating to techniques for power management. In an example, an apparatus comprises logic, at least partially comprising hardware logic, to generate a voltage/frequency curve for at least one of a core or a sub-core in a processor and manage an operating voltage level of the at least one of a core or a sub-core using the voltage/frequency curve. Other embodiments are also disclosed and claimed.
Abstract:
In one embodiment an apparatus includes a multiplicity of processor components; one or more device components communicatively coupled to one or more processor components of the multiplicity of processor components; and a controller comprising logic at least a portion of which is in hardware, the logic to schedule one or more forced idle periods interspersed with one or more active periods, a forced idle period spanning a duration during which the multiplicity of processor components and the one or more device components are simultaneously placed in respective idle states that define a forced idle power state during isolated sub-periods of the forced idle period. Other embodiments are disclosed and claimed.