Abstract:
The invention relates to systems and methods for filling a medical device with an active agent composition. In an embodiment, the invention includes a method for filling a medical device with an active agent composition. The method can include applying the active agent composition to the outside surface of the medical device, the medical device comprising a housing defining a lumen and a plurality of apertures. The method can also include contacting a surface of a press member against the outside surface of the medical device thereby pushing the active agent composition through the apertures and into the lumen of the medical device. Other embodiments are also included herein.
Abstract:
The present application relates to a method for vapor depositing a polymeric coating onto a substrate. In an embodiment, the invention is a method for applying a polymer coating to a substrate comprising performing a bake-out cycle with a chemical vapor deposition system and performing a deposition cycle with the chemical vapor deposition system.
Abstract:
A method of forming a polymer layer on a support surface by the use of a coating agent and polymerizable compounds. The coating agent provides photoreactive groups adapted to attach the agent to the surface, as well as photoreactive groups adapted to remain unattached to the surface, and thus serve as photoinitiators for the activation of polymerizable compounds in order to form a polymer layer thereon. Also provided are coating agents, per se, as well as a method of using such agents and the resultant surfaces and devices fabricated therefrom.
Abstract:
Method and reagent composition for covalent attachment of target molecules, such as nucleic acids, onto the surface of a substrate. The reagent composition includes groups capable of covalently binding to the target molecule. Optionally, the composition can contain photoreactive groups for use in attaching the reagent composition to the surface. The reagent composition can be used to provide activated slides for use in preparing microarrays of nucleic acids.
Abstract:
A process and apparatus for dip-coating intermediate and/or discrete discontinuous portions of longitudinal devices, including medical devices such as catheters and guidewires. The apparatus provides a chamber in which both the desired portion(s) of the device and the coating solution can be controllably contacted. A controlled coating can be achieved within the chamber by providing and controlling one or more of the following relationships: a) the manner in which a chamber (containing solution) is itself moved with respect to a static device, b) the manner in which the device is moved with respect to a fixed chamber position containing a fixed volume of solution, and/or c) the manner in which both the chamber and device are fixed in position, and the coating is achieved by adding and removing a volume of solution from the chamber. The resultant movement of solution and device is intended to mimic or replicate the relative movements involved in a conventional dip-coating procedure, at least along the length of device to be coated.
Abstract:
The present invention relates to a catheter assembly that can deliver a therapeutic composition. The catheter assembly can include an outer balloon with openings for releasing the therapeutic composition. When the catheter assembly is in its contracted state, the openings are closed, and the assembly retains the therapeutic composition. When the catheter assembly is in its dilated state, the openings are open, and the therapeutic composition is released. The present invention also includes methods of making and using such a catheter assembly.
Abstract:
The present invention relates to a pharmaceutical composition for intravascular delivery of a therapeutic agent, such as paclitaxel, rapamycin, or an analog thereof. The composition includes the therapeutic agent and a biocompatible solvent, such as glycofurol. The composition can aid tissue penetration by the therapeutic agent. A catheter assembly that protects the pharmaceutical composition from the surroundings can be used for its intravascular delivery.
Abstract:
A catheter assembly includes an expandable and collapsible structure having an outer surface. The expandable and collapsible structure is adapted to expand between a contracted state and a dilated state. A guard is bonded to the outer surface of the expandable and collapsible structure. The guard and the expandable and collapsible structure cooperatively define a plurality of reservoirs. A coating disposed in the reservoirs. The coating includes a bioactive agent. The coating protrudes from the reservoirs when the expandable and collapsible structure is expanded to the dilated state.
Abstract:
A wound spacer device comprising multiple beads connected by non-absorbable suture material is disclosed. The device can be applied, for example, by a first responder to an injured individual, or can be applied by a trauma treatment facility, such as a Level 2 medical unit. In typical embodiments the device allows for site-specific controlled elution of an antimicrobial agent, such as Tobramycin, including defined elution over a period of time, such as 48 or 72 hours.
Abstract:
A grafting reagent and related method of using the reagent to form a polymeric layer on a support surface, and particularly a porous support surface, in a manner that provides and/or preserves desired properties (such as porosity) of the surface. The reagent and method can be used to provide a thin, conformable, uniform, uncrosslinked coating having desired properties onto the surface of a preformed, and particularly a porous, polymeric substrate. The method includes the steps of a) providing a porous support surface, b) providing a nonpolymeric grafting reagent comprising a photoinitator group, c) providing one or more polymerizable monomers adapted to be contacted with the surface, in the presence of the grafting reagent, and to be polymerized upon activation of the photoinitiator; and d) applying the grafting reagent and monomer(s) to the surface in a manner, and under conditions, suitable to coat the surface with the grafting reagent and to cause the polymerization of monomers to the surface upon activation of the grafting reagent.