Abstract:
A manufacturing method for forming a semiconductor device includes: first, a substrate is provided, a fin structure is formed on the substrate, and a plurality of gate structures are formed on the fin structure, next, a hard mask layer and a first photoresist layer are formed on the fin structure, an first etching process is then performed on the first photoresist layer, afterwards, a plurality of patterned photoresist layers are formed on the remaining first photoresist layer and the remaining hard mask layer, where each patterned photoresist layer is disposed right above each gate structure, and the width of each patterned photoresist is larger than the width of each gate structure, and the patterned photoresist layer is used as a hard mask to perform an second etching process to form a plurality of second trenches.
Abstract:
A metal gate structure located on a substrate includes a gate dielectric layer, a metal layer and a titanium aluminum nitride metal layer. The gate dielectric layer is located on the substrate. The metal layer is located on the gate dielectric layer. The titanium aluminum nitride metal layer is located on the metal layer.
Abstract:
A semiconductor device is disclosed. The semiconductor device includes: a substrate; a first metal gate on the substrate; a first hard mask on the first metal gate; an interlayer dielectric (ILD) layer on top of and around the first metal gate; and a patterned metal layer embedded in the ILD layer, in which the top surface of the patterned metal layer is lower than the top surface of the first hard mask.
Abstract:
A method for manufacturing semiconductor structures includes providing a substrate having a plurality of mandrel patterns and a plurality of dummy patterns, simultaneously forming a plurality of first spacers on sidewalls of the mandrel patterns and a plurality of second spacers on sidewalls of the dummy patterns, and removing the second spacers and the mandrel patterns to form a plurality of spacer patterns on the substrate.
Abstract:
A method for fabricating a semiconductor device is provided according to one embodiment of the present invention and includes forming an interlayer dielectric on a substrate; forming a trench surrounded by the interlayer dielectric; depositing a dielectric layer and a work function layer on a surface of the trench sequentially and conformally; filling up the trench with a conductive layer; removing an upper portion of the conductive layer inside the trench; forming a protection film on a top surface of the interlayer dielectric and a top surface of the conductive layer through a directional deposition process; removing the dielectric layer exposed from the protection film; and forming a hard mask to cover the protection film.
Abstract:
A method for fabricating a semiconductor device is provided according to one embodiment of the present invention and includes forming an interlayer dielectric on a substrate; forming a trench surrounded by the interlayer dielectric; depositing a dielectric layer and a work function layer on a surface of the trench sequentially and conformally; filling up the trench with a conductive layer; removing an upper portion of the conductive layer inside the trench; forming a protection film on a top surface of the interlayer dielectric and a top surface of the conductive layer through a directional deposition process; removing the dielectric layer exposed from the protection film; and forming a hard mask to cover the protection film.
Abstract:
A method for forming a semiconductor device comprises the following steps: first, a substrate is provided, a first photo-etching process is carried out with a first photomask to form at least one device structure and a plurality of compensation structures, wherein the first photomask comprises at least one device pattern and a plurality of dummy patterns. A photoresist layer is then formed on the device structure and each compensation structures; a second photo-etching process is then carried out with a second photomask to remove each compensation structure.
Abstract:
A semiconductor device includes a fin-shaped structure on a substrate, a gate structure on the fin-shaped structure and an interlayer dielectric (ILD) layer around the gate structure, and a single diffusion break (SDB) structure in the ILD layer and the fin-shaped structure. Preferably, the SDB structure includes a bottom portion and a top portion on the bottom portion, in which the top portion and the bottom portion include different widths.
Abstract:
A semiconductor device includes a fin-shaped structure on a substrate, a single diffusion break (SDB) structure in the fin-shaped structure to divide the fin-shaped structure into a first portion and a second portion, and a gate structure on the SDB structure. Preferably, the SDB structure includes silicon oxycarbonitride (SiOCN), a concentration portion of oxygen in SiOCN is between 30% to 60%, and the gate structure includes a metal gate having a n-type work function metal layer or a p-type work function metal layer.
Abstract:
A semiconductor device includes a fin-shaped structure on a substrate, a single diffusion break (SDB) structure in the fin-shaped structure to divide the fin-shaped structure into a first portion and a second portion, and a gate structure on the SDB structure. Preferably, the SDB structure includes silicon oxycarbonitride (SiOCN), a concentration portion of oxygen in SiOCN is between 30% to 60%, and the gate structure includes a metal gate.