Abstract:
The present invention provides a novel ruthenium complex which has an excellent catalytic activity in terms of reactivity for an asymmetric reduction of a carbonyl compound and enantioselectivity, a catalyst using the ruthenium complex, and a method for preparing optically active alcohol compounds using the ruthenium complex. The present invention relates to a ruthenium complex having a ruthenacycle structure, a catalyst for an asymmetric reduction consisting of the ruthenium complex, and a method for preparing optically active alcohol compounds using the ruthenium complex.
Abstract:
The invention relates to a method of forming an olefin from a first olefin and a second olefin in a metathesis reaction, comprising step (i): (i) reacting the first olefin with the second olefin in the presence of a compound that catalyzes said metathesis reaction such that the molar ratio of said compound to the first or the second olefin is from 1:500 or less, and the conversion of the first or the second olefin to said olefin is at least 50%, characterized in that as compound that catalyzes said metathesis reaction a compound of formula (A) is used: wherein M is Mo or W; R1 is aryl, heteroaryl, alkyl, or heteroalkyl; optionally substituted; R2 and R3 can be the same or different and are hydrogen, alkyl, alkenyl, heteroalkyl, heteroalkenyl, aryl, or heteroaryl; optionally substituted; R5 is alkyl, alkoxy, heteroalkyl, aryl, heteroaryl, silylalkyl, silyloxy, optionally substituted; and R4 is a residue R6—X—, wherein X═O and R6 is aryl, optionally substituted; or X═S and R6 is aryl, optionally substituted; or X═O and R6 is (R7, R8, R9)Si; wherein R7, R8, R9 are alkyl or phenyl, optionally substituted; or X═O and R6 is (R10, R11, R12)C, wherein R10, R11, R12 are independently selected from phenyl, alkyl; optionally substituted; and to the catalysts used in the method.
Abstract:
The present invention relates generally to catalysts and processes for the Z-selective formation of internal olefin(s) from terminal olefin(s) via homo-metathesis reactions.
Abstract:
The present invention relates to preparation of highly efficient chiral recyclable homogeneous catalysts generated in situ by the reaction of chiral oligomeric [H4] ligands and a metal salt taken in 1:1 molar ratio for asymmetric nitroaldol reaction, wherein nitroaldol reactions of various aldehydes such as aromatic, aliphatic α,β-unsaturated aldehydes, alicyclic aldehydes and nitroalkenes were carried out to produce optically active β-nitroalcohols in high yield and with moderate to excellent enantioselectivity (ee up to >95%) in presence of a base and an optically active chiral recyclable homogeneous catalyst represented by the following formula (I).
Abstract:
The invention relates to an article with antifouling properties, intended for aquatic uses and, in particular, for marine uses, and to a method for slowing down the growth of aquatic organisms on submersible or semi-submersible structures.
Abstract:
This invention relates to a catalyst and method for hydrodesulfurizing naphtha. More particularly, a Co/Mo metal hydrogenation component is loaded on a high temperature alumina support in the presence of a dispersion aid to produce a catalyst that is then used for hydrodesulfurizing naphtha. The high temperature alumina support has a defined surface area that minimizes olefin saturation.
Abstract:
The present invention relates to a ligand compound, an organic chromium compound, a catalyst system for ethylene oligomerization, a preparation method thereof, and an ethylene oligomerization method using the same. The catalyst system for ethylene oligomerization according to the present invention is used to prepare a low-density polyethylene in one reactor by using a small amount of comonomers such as alpha-olefin or by using only ethylene without comonomers, because it maintains high catalytic activity and high alpha-olefin selectivity even though supported on a support.
Abstract:
A composition is capable of curing via condensation reaction. The composition uses a new condensation reaction catalyst. The new condensation reaction catalyst is used to replace conventional tin catalysts. The composition can react to form a gum, gel, rubber, or resin.
Abstract:
The present invention provides a novel ruthenium complex which has an excellent catalytic activity in terms of reactivity for asymmetric reduction of a carbonyl compound and enantioselectivity, a catalyst using the ruthenium complex, and a method for preparing optically active alcohol compounds using the ruthenium complex. The present invention relates to a ruthenium complex having ruthenacycle structure, a catalyst for asymmetric reduction consisting of the ruthenium complex, and a method for preparing optically active alcohol using the ruthenium complex.
Abstract:
The present disclosure relates to biaryl diphosphine ligands of the formula (B), processes for the production of the ligands and the use of the ligands in metal catalysts for asymmetric synthesis. The disclosure also relates to intermediates used for the production of the biaryl diphosphine ligand. (Formula (B))