Abstract:
The present invention relates to a plasma polymerized thin film having high hardness and a low dielectric constant and a manufacturing method thereof, and in particular, relates to a plasma polymerized thin film having high hardness and a low dielectric constant for use in semiconductor devices, which has improved mechanical strength properties such as hardness and elastic modulus while having a low dielectric constant, and a manufacturing method thereof.
Abstract:
A method for the production of substrate coated with a poly(ionic liquid), which method comprises the steps of: •(i) providing a monomer (I) which comprises both a polymerisable functional group and a nitrogen centre; •(ii) providing a substrate; •(iii) contacting the substrate with the monomer (I) in an exciting medium, in order to cause polymerisation of the monomer and deposition of the resultant precursor polymer (II) on the substrate; and •(iv) subsequently contacting the precursor polymer (II) with a cation-generating agent, in order to convert it into a poly(ionic liquid) (III) containing an imidazolium cation.
Abstract:
The invention relates to a method for treating an elongated object using a plasma process. The method comprises the steps of providing an elongated object in a planar electrode structure, and applying potential differences between electrodes of an electrode structure to generate the plasma process. Further, the method comprises at least partially surrounding the elongated object by a unitary section of the guiding structure, the electrode structure being associated with the unitary section.
Abstract:
The present invention provides a method for applying a surface coating on, for example, a sheet of fabric and further provides a plasma chamber (10) for coating a sheet of fabric, e.g. a textile material, with a polymer layer, the plasma chamber (10) comprising a plurality of electrode layers (RF, M) arranged successively within the plasma chamber, wherein at least two adjacent electrode layers are radiofrequency electrode layers (RF) or ground electrode layers (M), thereby providing a surface coating on both sides of a fabric sheet.
Abstract:
A waterproof breathable sole for shoes, which comprises, for at least part of its extension, at least two structural layers, a lower one provided with a supporting structure so as to form the tread, and an upper one that is permeable to water vapor. The lower layer has portions that are open onto the upper layer. A coating obtained by means of a plasma deposition treatment for waterproofing is provided on the upper layer. A layer is thus obtained that has structural functions and characteristics of resistance to damage and is at the same time waterproof and breathable.
Abstract:
The present invention relates to a method of manufacturing a patterned substrate for culturing cells, comprising the steps of: (1) preparing a substrate; (2) forming a first plasma polymer layer by integrating a first precursor material using a plasma on the substrate; (3) placing a shadow mask having a predetermined pattern on the first plasma polymer layer; and (4) forming a second patterned plasma polymer layer by integrating a second precursor material using a plasma.
Abstract:
A method for forming an organic monolayer includes supplying to an object an organic material gas including organic molecules, each molecule having a binding site that is to be chemically bonded to a surface of the object. The method further includes supplying excited hydrogen to the organic material gas before the organic material gas reaches the object to substitute an end of the binding site with hydrogen, and forming an organic monolayer by reaction between the end substituted with the hydrogen and the object.
Abstract:
The present invention relates to the use of a crosslinked, silicon-containing layer containing, substantially consisting of or consisting of silicon, O, C, H, optionally N which can be produced by plasma polymerization and/or crosslinking of organosilicon liquids by a plasma process and/or UV radiation of a wavelength of less than 250 nm, without using metals of an atomic number of more than 14, as a biocompatible surface, for imparting to a surface or providing a surface with a non-genotoxic effect. The invention also relates to correspondingly coated articles and to processes for the production thereof.
Abstract:
A microfabricated device or component thereof, such as microfluidics or nanofluidics device having a uniform non-wetting or non-absorbing polymeric coating or surface modification formed on a surface thereof by ionization or activation technology such as plasma processing, to produce a surface energy of less than 15 mNm−1. The treatment enhances the free-flowing properties of a liquid through the device during use.
Abstract:
According to the invention there is provided a dispenser device for dispensing a medicament, the device including at least one metallic component having at least one non-metallic surface which comes into contact with the medicament during storage or use of the device, in which said non-metallic surface has an interface with the underlying metallic component which substantially comprises metal-fluoride and/or metal carbide moieties.