Abstract:
The present invention relates to hydrophilic, multi-functional ultra-thin coatings deposited onto substrates for different applications, with excellent performance in terms of stability and durability. The present invention also describes improved methods to deposit the hydrophilic, multi-functional ultra-thin coatings of the present invention. The coatings are deposited by means of a low pressure and low power plasma polymerization. The present invention also comprises substrates coated with a method and a coating according as described in the present invention.
Abstract:
The present invention concerns a method for coating outer, internal and inner surfaces of an item of footwear with a water- and/or oil-repellent coating by a low-pressure plasma polymerization coating process, by degassing the item of footwear prior to said coating process.
Abstract:
A method of protecting a component from corrosion and providing electrical conductivity to one or more electrical contacts on the component, the method including the steps of placing the component in a chamber, and coating the component by plasma deposition of a polymer coating formed from any one or more of the following precursor monomers, acrylate, methacrylate or organosilane.
Abstract:
A method for protecting a substrate from corrosion, which method comprises in sequence: a first step including plasma polymerization of a precursor monomer and deposition of the resultant polymer onto at least one surface of a substrate; a second step including exposing the polymer to an inert gas in the presence of a plasma without further deposition of polymer onto the or each surface of the substrate; a third step including plasma polymerization of the precursor monomer used in the first step and deposition of the resultant polymer onto the polymer deposited in the first step so as to increase the thickness of the polymer; and optionally, a fourth step including exposing the polymer to an inert gas in the presence of a plasma without further deposition of polymer onto the or each surface of the substrate.
Abstract:
The present invention provides a method for applying a surface coating on, for example, a sheet of fabric and further provides a plasma chamber (10) for coating a sheet of fabric, e.g. a textile material, with a polymer layer, the plasma chamber (10) comprising a plurality of electrode layers (RF, M) arranged successively within the plasma chamber, wherein at least two adjacent electrode layers are radiofrequency electrode layers (RF) or ground electrode layers (M), thereby providing a surface coating on both sides of a fabric sheet.
Abstract:
The present invention concerns a method comprising the steps of: introducing a substrate comprising a surface to be coated in a low-pressure reaction chamber; exposing said surface to a plasma during a treatment period within said reaction chamber; ensuring a stable plasma ignition by applying a power input, characterized in that the power input is continuously strictly higher than zero Watt (W) during said treatment period and comprises at least a lower limit power and at least an upper limit power strictly larger than said lower limit power, thereby obtaining a substrate with a coated surface. The present invention further concerns an apparatus for treating a substrate with a low-pressure plasma process and a substrate treated as such.
Abstract:
The invention provides a method of coating a fabric, e.g. a textile material, with a polymer coating, which method comprises contacting a fabric with a monomer and subjecting the monomer to low power plasma polymerization, wherein the monomer comprises the general formula (I): CnF2n+1CmX2mCR1Y—OCO—C(R2)═CH2, wherein n is 2 to 6, m is 0 to 9, X and Y are H, F, Cl, Br or I, R1 is H or alkyl, e.g. —CH3, or a substituted alkyl, e.g. an at least partially halo-substituted alkyl, and R2 is H or alkyl, e.g. —CH3 or a substituted alkyl, e.g. an at least partially halo-substituted alkyl.
Abstract:
The present invention concerns a method comprising the steps of: introducing a substrate comprising a surface to be coated in a low-pressure reaction chamber; exposing said surface to a plasma during a treatment period within said reaction chamber; ensuring a stable plasma ignition by applying a power input, characterized in that the power input is continuously strictly higher than zero Watt (W) during said treatment period and comprises at least a lower limit power and at least an upper limit power strictly larger than said lower limit power, thereby obtaining a substrate with a coated surface. The present invention further concerns an apparatus for treating a substrate with a low-pressure plasma process and a substrate treated as such.
Abstract:
The invention provides a method of coating a fabric, e.g. a textile material, with a polymer coating, which method comprises contacting a fabric with a monomer and subjecting the monomer to low power plasma polymerisation, wherein the monomer comprises the general formula (I): CnF2n+1CmX2mCR1Y—OCO—C(R2)═CH2, wherein n is 2 to 6, m is 0 to 9, X and Y are H, F, Cl, Br or I, R1 is H or alkyl, e.g. —CH3, or a substituted alkyl, e.g. an at least partially halo-substituted alkyl, and R2 is H or alkyl, e.g. —CH3 or a substituted alkyl, e.g. an at least partially halo-substituted alkyl.
Abstract:
A method is provided for at least partially preventing discolouration of a substrate by a plasma coating process, by diffusing a plasma prior to and/or during depositing of said plasma on said substrate to form a coating. Also provided is a plasma coating apparatus comprising a plasma diffuser for homogenizing a plasma density nearby a substrate to be coated.