Abstract:
MEMs devices are integrally fabricated with included micro or nanoparticles by providing a mixture of a sacrificial material and a multiplicity of particles, disposing the mixture onto a substrate, fabricating a MEMs structure on the substrate including at least part of the mixture, so that at least some of the mixture is enclosed in the MEMs structure, removing the sacrificial material, and leaving at least some of the multiplicity of particles substantially free and enclosed in the MEMs structure. The step of fabricating a MEMs structure is quite general and is contemplated as including one or a multiplicity of additional steps for creating some type of structure in which the particles, which may be microbeads or nanobeads, are included. A wide variety of useful applications for MEMs integrated with micro or nanoparticles are available.
Abstract:
MEMS Device Having A Trilayered Beam And Related Methods. According to one embodiment, a movable, trilayered microcomponent suspended over a substrate is provided and includes a first electrically conductive layer patterned to define a movable electrode. The first metal layer is separated from the substrate by a gap. The microcomponent further includes a dielectric layer formed on the first metal layer and having an end fixed with respect to the substrate. Furthermore, the microcomponent includes a second electrically conductive layer formed on the dielectric layer and patterned to define an electrode interconnect for electrically communicating with the movable electrode.
Abstract:
A micro-scale interconnect device with internal heat spreader and method for fabricating same. The device includes first and second arrays of generally coplanar electrical communication lines. The first array is disposed generally along a first plane, and the second array is disposed generally along a second plane spaced from the first plane. The arrays are electrically isolated from each other. Embedded within the interconnect device is a heat spreader element. The heat spreader element comprises a dielectric material disposed in thermal contact with at least one of the arrays, and a layer of thermally conductive material embedded in the dielectric material. The device is fabricated by forming layers of electrically conductive, dielectric, and thermally conductive materials on a substrate. The layers are arranged to enable heat energy given off by current-carrying communication lines to be transferred away from the communication lines.
Abstract:
A micro-scale interconnect device with internal heat spreader and method for fabricating same. The device includes first and second arrays of generally coplanar electrical communication lines. The first array is disposed generally along a first plane, and the second array is disposed generally along a second plane spaced from the first plane. The arrays are electrically isolated from each other. Embedded within the interconnect device is a heat spreader element. The heat spreader element comprises a dielectric material disposed in thermal contact with at least one of the arrays, and a layer of thermally conductive material embedded in the dielectric material. The device is fabricated by forming layers of electrically conductive, dielectric, and thermally conductive materials on a substrate. The layers are arranged to enable heat energy given off by current-carrying communication lines to be transferred away from the communication lines.
Abstract:
A meso-scale MEMS device having a movable member (51) is formed using standard printed wiring board and high density interconnect technologies and practices. In one embodiment, sacrificial material disposed about the movable member (51) is removed through openings (101, 102) as formed through a cover (91) to form a cavity (121) that retains and limits the freedom of movement of the movable member (51). The movable member can support a reflective surface (224) to thereby provide a mechanism that will support a projection display and/or image scanner (such as a bar code scanner).
Abstract:
Trilayered Beam MEMS Device and Related Methods. According to one embodiment, a method for fabricating a trilayered beam is provided. The method can include depositing a sacrificial layer on a substrate and depositing a first conductive layer on the sacrificial layer. The method can also include forming a first conductive microstructure by removing a portion of the first conductive layer. Furthermore, the method can include depositing a structural layer on the first conductive microstructure, the sacrificial layer, and the substrate and forming a via through the structural layer to the first conductive microstructure. Still furthermore, the method can include the following: depositing a second conductive layer on the structural layer and in the via; forming a second conductive microstructure by removing a portion of the second conductive layer, wherein the second conductive microstructure electrically communicates with the first conductive microstructure through the via; and removing a sufficient amount of the sacrificial layer so as to separate the first conductive microstructure from the substrate, wherein the structural layer is supported by the substrate at a first end and is freely suspended above the substrate at an opposing second end.
Abstract:
MEMS Device Having A Trilayered Beam And Related Methods. According to one embodiment, a movable, trilayered microcomponent suspended over a substrate is provided and includes a first electrically conductive layer patterned to define a movable electrode. The first metal layer is separated from the substrate by a gap. The microcomponent further includes a dielectric layer formed on the first metal layer and having an end fixed with respect to the substrate. Furthermore, the microcomponent includes a second electrically conductive layer formed on the dielectric layer and patterned to define an electrode interconnect for electrically communicating with the movable electrode.
Abstract:
A method comprises depositing an organic material on a substrate; depositing additional material different from the organic material after depositing the organic material; and removing the organic material with a compressed fluid. Also disclosed is a method comprising: providing an organic layer on a substrate; after providing the organic layer, providing one or more layers of a material different than the organic material of the organic layer; removing the organic layer with a compressed fluid; and providing an anti-stiction agent with a compressed fluid to material remaining after removal of the organic layer.
Abstract:
A bonded wafer in which silicon wafers and an amorphous heat fusion bonding polyimide are used, a process for producing the same, and a substrate which is prepared by variously processing the bonded wafer.
Abstract:
The present invention relates to a fabrication process relating to a fabrication process for manufacture of micro-electromechanical (MEM) devices such as cantilever supported beams. This fabrication process requires only two lithographic masking steps and offers moveable electromechanical devices with high electrical isolation. A preferred embodiment of the process uses electrically insulating glass substrate as the carrier substrate and single crystal silicon as the MEM component material. The process further includes deposition of an optional layer of insulating material such as silicon dioxide on top of a layer of doped silicon grown on a silicon substrate. The silicon dioxide is epoxy bonded to the glass substrate to create a silicon--silicon dioxide-epoxy-glass structure. The silicon is patterned using anisotropic plasma dry etching techniques. A second patterning then follows to pattern the silicon dioxide layer and an oxygen plasma etch is performed to undercut the epoxy film and to release the silicon MEM component. This two-mask process provides single crystal silicon MEMs with electrically isolated MEM component. Retaining silicon dioxide insulating material in selected areas mechanically supports the MEM component.