Abstract:
A process for producing an optical glass product having a predetermined distribution of refractive index in the interior of the product is disclosed. The process comprises the steps of:(a) preparing an aqueous silicate solution containing from about 0.1 to about 0.6 mol/liter of Si (as SiO.sub.2) comprising silicic acid and at least one element selected from the group consisting of rubidium, thallium and cesium;(b) mixing the silicate solution with an acidic aqueous solution, and letting the two solutions react with each other for a period of time sufficient for polymerization to produce a porous gelled product wherein the silica particles are agglomerated;(c) leaching the gelled product with a liquid selected from the group consisting of water, a weakly acidic aqueous solution, an aqueous solution having an alkali metal salt dissolved therein and an aqueous solution of organic matter capable of dissolving Rb.sub.2 O, Cs.sub.2 O, or Tl.sub.2 O, unitl the center of the product starts to dissolve; and(d) drying the leached product in a predetermined atmosphere, and further heating the partially leached gelled product at a temperature sufficiently high to eliminate the particulate material but lower than the melting point of the silica.
Abstract:
Ion-exchanged alkali aluminosilicate glass articles with a ratio of peak compressive stress value to Young's modulus value of 15 or more. The glass articles may include Al2O3 mol %+RO mol %≥17 mol %, where RO mol %=MgO mol %+CaO mol %, and be substantially free of ZnO, SrO, BaO, B2O3, P2O5, Li2O, and K2O. The glass articles may have a peak compressive stress value in a range of 500 MPa to 1300 MPa. The glass articles are suitable for various high-strength applications, including cover glass applications that experience significant bending stresses during use, for example, cover glasses for flexible displays.
Abstract:
A chemically toughenable or toughened sheet-like glass article is provided. The article has a glass with a composition comprising Al2O3, SiO2, Li2O, and Na2O, wherein (Al2O3)−(Li2O+Na2O), in mol %, is less than 0; a thickness between 0.3 mm and 4 mm; a light transmittance of at least 0.001% to at most 60% at 450 nm, of at least 0.001% to at most 30% at 540 nm, and of at least 0.001% to at most 30% at 630 nm; and an IR transmittance of at least 10% to not more than 99% at any wavelength in a wavelength range from 900 nm to 1100 nm. The light and IR transmittances are determined for a thickness of the article of 1 mm.
Abstract:
There is provided a method for producing a low-loss alkali metal-doped silica core optical fiber having excellent hydrogen resistance. The method for producing the optical fiber according to the present invention includes a drawing step of drawing an optical fiber preform in a drawing furnace to produce a silica glass-based optical fiber including a core region containing an alkali metal with an average concentration of 0.5 atomic ppm or more and a cladding region that surrounds the core region and a heating step of heating the optical fiber in a heating furnace through which the optical fiber drawn from the drawing furnace passes.
Abstract:
A doping optimized single-mode optical fiber with ultra low attenuation includes a core layer and cladding layers. The cladding layers has an inner cladding layer surrounding the core layer, a trench cladding layer surrounding the inner cladding layer, an auxiliary outer cladding layer surrounding the trench cladding layer, and an outer cladding layer surrounding the auxiliary outer cladding layer. The content of fluorine in the core layer is ≦0.5 wt %, ΔGe≦0.12%, Δn1≦0.12%. The content of fluorine in the inner cladding layer is 0.5-1.5 wt %, Δn2≦−0.14%. The content of fluorine in the trench cladding layer is 1-3 wt %, Δn3≦−0.25%. The content of fluorine in the auxiliary outer cladding layer is 0.5-2 wt %, Δn4≦−0.14%. The outer cladding layer is a pure silicon dioxide glass layer and/or a metal-doped silicon dioxide glass layer.
Abstract:
An optical fiber containing alkali metal elements or the like in which Rayleigh scattering loss can be reduced is provided. An optical fiber includes a core composed of silica glass and a cladding which surrounds the core, has a refractive index lower than a refractive index of the core, and is composed of silica glass containing fluorine. The core contains a first group of dopants and a second group of dopants having a diffusion coefficient lower than a diffusion coefficient of the first group of dopants. The difference between the maximum value and the minimum value of residual stress in the optical fiber is 150 MPa or less.
Abstract:
An optical fiber having a reduced attenuation includes a silica glass core and a silica glass cladding. The silica glass core has substantially no germanium and includes a first core and a second core. The second core encloses the first core, the refractive index of the second core is larger than the refractive index of the first core, and the average value of halogen concentration of the second core is 5000 ppm or more. The silica glass cladding surrounds the second core and contains substantially no gemianium. The refractive index of the cladding is smaller than the refractive index of the first core.
Abstract:
An optical fiber preform which can be drawn into a low attenuation optical fiber is provided with a core portion and a cladding portion surrounding the core portion. The core portion includes a first core portion and a second core portion surrounding the first core portion. The cladding portion includes a first cladding portion surrounding the second core portion and a second cladding portion surrounding the first cladding portion. The first core portion contains an alkali metal element, the concentration of oxygen molecules contained in glass is 30 mol ppb or more and 200 mol ppb or less in a part of or entire region having an alkali metal atom concentration of 100 atomic ppm or more, and the concentration of oxygen molecules contained in glass is 10 mol ppb or less in a region having an alkali metal atom concentration of 50 atomic ppm or less.
Abstract:
A doped silica-titania glass article is provided that includes a glass article having a glass composition comprising (i) a silica-titania base glass, (ii) a fluorine dopant, and (iii) a second dopant. The fluorine dopant has a concentration of fluorine of up to 5 wt. % and the second dopant comprises one or more oxides selected from the group consisting of Al, Nb, Ta, B, Na, K, Mg, Ca and Li oxides at a total oxide concentration from 50 ppm to 6 wt. %. Further, the glass article has an expansivity slope of less than 0.5 ppb/K2 at 20° C. The second dopant can be optional. The composition of the glass article may also contain an OH concentration of less than 100 ppm.