Abstract:
A process for improving the flow rate of an aqueous dispersion which comprises adding a natural polymer to said aqueous system and then adding a synthetic polymer to the aqueous system.
Abstract:
An optical film including cellulose acylate and a compound represented by General Formula (I) described below, a polarizing plate, and a liquid crystal display device; R1 and R3 represent hydrogen atoms, alkyl groups having 1 to 20 carbon atoms, cycloalkyl groups having 3 to 20 carbon atoms, alkenyl groups having 2 to 20 carbon atoms, or aromatic groups having 6 to 20 carbon atoms. R5 represents a hydrogen atom, an unsubstituted alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an aralkyl group represented by -L5-Ar5 (L5 represents an alkylene group having 1 to 20 carbon atoms and Ar5 represents an aromatic group having 6 to 20 carbon atoms). Here, the total of ring structures present in R1, R3, and R5 is one or two.
Abstract:
A composition containing a cellulose resin (X) obtained by binding an organic group to cellulose or a derivative thereof and a linear aliphatic polyester (Y), which is at least one of the following linear aliphatic polyesters (Y1) and (Y2) or a crosslinked product thereof: (Y1) a linear aliphatic polyester containing at least one of repeat units represented by the following formula (I) and formula (II) —(CO—R1—COO—R2—O)— formula (I) where R1 represents a bivalent aliphatic group having 1 to 12 carbon atoms and R2 represents a bivalent aliphatic group having 2 to 12 carbon atoms. —(CO—R3—O)— formula (II) where R3 represents a bivalent aliphatic group having 2 to 10 carbon atoms. (Y2) a linear aliphatic polyester comprising a ring-opening polymerization product of a cyclic ester.
Abstract:
The present invention provides a resin composition capable of forming a film exhibiting a small humidity-dependent variation in optical values; a triazole compound to be incorporated into the resin composition; an optical film and an optical lens, each of which is prepared from the resin composition and exhibits a small humidity-dependent variation in optical values; and a polarizing plate, a circularly polarizing plate, and an image display device, each of which includes the optical film and exhibits excellent moisture resistance. The resin composition of the present invention contains a resin and a compound having a 5-membered or 6-membered aromatic hydrocarbon or heterocyclic ring, wherein the resin is a hygroscopic resin, the compound has at least three specific aromatic rings having a specific NICS value, and the specific aromatic rings are bonded to one another via a single bond or one or two atoms.
Abstract:
A composition includes a cement component and an amidyl pyranose component. A method of making the composition includes mixing a cement component with an amidyl pyranose component.
Abstract:
A method of conferring modified properties, e.g. modified physical and/or biochemical properties, to a metallic substrate surface, including at least two steps being (i) a first step including at least exposing the substrate surface to a hetero-bifunctional anchoring molecule carrying at least a silane group and at least a A1 group, the A1 group being optionally introduced within the anchoring molecule via a preliminary functionalizing step, and (ii) a second step of exposing the substrate surface to a polymer carrying at least three groups A2 capable of reacting with A1 in a thiol-ene reaction, the number average molecular weight of the polymer being greater than 1 000 g/mol.
Abstract:
In accordance with some embodiments of the present invention, a composite material is prepared by blending a bio-derived filler into a polymer, wherein the filler includes a diene-modified cellulosic nanomaterial (e.g., cellulose nanocrystals (CNCs) and/or cellulose nanofibrils (CNFs) functionalized to contain a diene) and a dienophile-modified cellulosic nanomaterial (e.g., CNCs and/or CNFs functionalized to contain a dienophile). The modulus of the composite material is reversibly controllable by adjusting a degree of crosslinking between the diene-modified cellulosic nanomaterial and the dienophile-modified cellulosic nanomaterial. This degree of crosslinking is thermally reversible. On one hand, the degree of crosslinking may be increased via a Diels-Alder (DA) cycloaddition reaction at a first temperature, thereby increasing the modulus of the composite material. On the other hand, the degree of crosslinking may be decreased via a retro-DA reaction at a second temperature higher than the first temperature, thereby decreasing the modulus of the composite material.
Abstract:
In accordance with some embodiments of the present invention, a composite material is prepared by blending a bio-derived filler into a polymer, wherein the filler includes a diene-modified cellulosic nanomaterial (e.g., cellulose nanocrystals (CNCs) and/or cellulose nanofibrils (CNFs) functionalized to contain a diene) and a dienophile-modified cellulosic nanomaterial (e.g., CNCs and/or CNFs functionalized to contain a dienophile). The modulus of the composite material is reversibly controllable by adjusting a degree of crosslinking between the diene-modified cellulosic nanomaterial and the dienophile-modified cellulosic nanomaterial. This degree of crosslinking is thermally reversible. On one hand, the degree of crosslinking may be increased via a Diels-Alder (DA) cycloaddition reaction at a first temperature, thereby increasing the modulus of the composite material. On the other hand, the degree of crosslinking may be decreased via a retro-DA reaction at a second temperature higher than the first temperature, thereby decreasing the modulus of the composite material.
Abstract:
A cover material for a bulk material pile and method for applying the cover material are disclosed. The cover composition comprises liquid, cement and/or fly ash, fiber, water dispersible polymer and acid.
Abstract:
A dispersion having a cationic zeta potential for use as a base coating on a sheet of paper or paperboard as a primer for a functional barrier top coating, wherein the composition comprises an anionic pigment containing mixture comprising one or more anionic pigments in an amount of at least about 20% dry weight of the mixture, and one or more polyamine-epihalohydrin cationic wet strength resin.