Abstract:
A diesel fuel lubricant as a replacement for sulfur lubrication in Ultra-Low and Low Sulfur Diesel fuels, the process for producing said lubricant, and the method of using said lubricant. This lubricant comprises alpha-olefins; low odor aromatic solvents; and at least one a base oil selected from the base oil group consisting of hydroisomerized high base oils and HT Severe Hydro-cracked Base Oils; as well as other ingredients. Also disclosed is a method for producing this lubricant.
Abstract:
The cetane number of middle distillate fuels may be increased using an additive composition including a polymer that may be a homopolymer or copolymer of olefins, and the like, where the polymer has a weight average molecular weight ranging from about 200,000 to about 5,000,000. The additive composition also includes a free radical initiator component, which may be an alkyl nitrate such as 2-ethylhexylnitrate (2-EHN), and/or a peroxide, such as t-butyl peroxide. In one non-limiting embodiment the amount of polymer in the additive composition is greater than the free radical initiator component. A solvent is also present, which the solvent may include alcohol, an alkyl substituted phenol and/or a heavy aromatic distillate.
Abstract:
The present disclosure relates to a gasoline combustion improver comprising an organic nitro compound with C—NO2 bond dissociation energy of about 60 to about 80 Kcal/mol of compound, wherein the organic nitro compound is selected from the group consisting of nitro-aromatics, heteroatom aromatic ring compounds, heteroatom nonaromatic ring compounds, and nitrated furfuryls, and wherein the organic nitro compound is not nitrotoluene or dinitrotoluene.
Abstract:
Provided are additives of formula I for use in hydrocarbonaceous compositions, such as petroleum or liquid fuels: (I) wherein R1, R2, R3, R4, and R5 are as defined herein. The additives improve the corrosion resistance of the compositions and, when the composition is biodiesel, also improve microbial resistance. The additives further enhance the antimicrobial efficacy of any added biocides contained in such compositions.
Abstract:
A cetane number increasing process and additive for diesel fuel, this additive being obtained by means of a less complex and more economic process which seeks to use by products in excess of supply on the market and to optimize the installed capacity of existing plants, the process producing a mixture of nitrated glycerol diethers is represented by the following general formula (I) where R can be: a hydrogen atom; or an R′—O group; and where R′ can be an alkene or alkyne or an unsaturated hydrocarbon formed by a number of carbon atoms ranging from 4 to 10 carbons.
Abstract:
Diesel cycle fuel compositions are described containing at least one dianhydrohexitol compound according to the general formula 2 and/or its derived hydrocarbyl ethers or nitric ethers compounds, where the R′ and R″ substituents are both H or one or both of R′ and R″ is alkyl, cycloalkyl or phenyl, or one or both are —NO2. A preferred fuel composition is that containing dimethyl isosorbide (DMI) added or not of isosorbide dinitrate (ISDN) as ignition improver. The dianhydrohexitols compounds form compositions with at least one of the components selected among petroleum-derived diesel fuel, biodiesel, ethanol and water. The mixture of DMI and ISDN has excellent cetane number (IQT). Still, the oxygenated nature of the dianhydrohexitols and related compounds of the fuel compositions inhibits soot formation upon burning of the said Diesel cycle fuel compositions.
Abstract:
The present invention relates to a process for reducing sulfur content in petroleum fuel, such as diesel fuel, and raising the Cetane Number to a value above 50.
Abstract:
The use of mixtures of (A) aliphatic saturated or unsaturated monocarboxylic acids having from 12 to 24 carbon atoms or their dimerization or trimerization products, or their ammonium salts, amides, esters or nitrites, and (B) polycyclic hydrocarbon compounds which are obtainable from distillation residues of natural oils which have been extracted from tree resins for improving the storage stability of fuel additive concentrates which comprise at least one detergent and at least one cetane number improver, the mixtures of components (A) and (B) being used in a concentration of from 0.7 to 20% by weight based on the total amount of the fuel additive concentrate.
Abstract:
An improved fuel additive formulation, method of use, and method of producing the fuel formulation are described. The improved fuel additive of the present invention comprises a mixture of nitroparaffins (comprising nitromethane, nitroethane, and nitropropane), and a combination of modified commercially available ester oil and/or a solubilizing agent, and/or toluene. The ratio of ester oil and/or solubilizing agent and/or toluence to nitroparaffin is preferably less than 20 volume percent, with nitroparaffins comprising the balance of the additive. A method of preparing and using the additive formulation is also provided.
Abstract:
The present invention provides a fuel additive composition for stabilizing blends of ethanol and a hydrocarbon boiling in the gasoline or diesel range, comprising: a) 0.1-10% of Cashew Nut Shell Liquid (CNSL) derivative(s) or mixtures thereof of formula (I) where m=0-12, n=0, 2, 4 & 6 and b) 0.1-10% of an organic co-solvent depending upon the percentage composition of diesel and ethanol blend.