Abstract:
A light receiver (50) is provided having a plurality of avalanche photodiode elements (10) that are each biased by a bias above a breakdown voltage and that are thus operated in a Geiger mode to trigger a Geiger current on light reception, wherein the avalanche photodiode elements (10) have a first connector (20, 22, 28a-b) and a second connector (20, 22, 28a-b); and wherein a first signal tapping circuit (12) for reading out the avalanche photodiode elements is connected to one of the connectors (20, 22, 28a-b). In this respect, a second signal tapping circuit (12) for reading out the avalanche photodiode elements (10) is connected to the other connector (20, 22, 28a-b).
Abstract:
Operational parameters of a single-photon detector are determined with a continuous wave laser source. At a fixed trigger, a dark count probability and a series of count probabilities at different optical powers are determined. A particular optical power is selected by using a wide-range variable attenuator to attenuate the optical power of the continuous wave laser. The dark count probability and the count probabilities are determined for different trigger rates. The operational parameters include efficiency, afterpulsing constant, and detrap time. The operational parameters are computed by fitting the computed dark count probabilities and count probabilities to a user-defined relationship.
Abstract:
A delay circuit is provided. The delay circuit includes a first regulator and a second regulator, each of which is independently selectable based on a selection signal applied to a selection terminal of the delay circuit. Furthermore, the delay circuit is configurable in one of two distinct delay resolution regimes, each corresponding to only one edge an input signal being actively delayed by the delay circuit when one of the first regulator and the second regulator is enabled and the other one of the first regulator and the second regulator is turned off.
Abstract:
Technologies are described for methods and systems effective to detect photon receiving events. A first comparator may compare a magnitude of a photon signal to a first threshold voltage to produce a first output. A second comparator may compare the magnitude of the photon signal to a second threshold voltage to produce a second output. A counter control circuit may increment a second counter in response to a determination that the magnitude of a first peak of the photon signal exceeds and then falls below the second threshold voltage. The counter control circuit may prevent a third counter from incrementing in response to a second peak of the photon signal. The counter control circuit may increment the first counter in response to the magnitude of the signal exceeding and then falling below the first threshold voltage. The first counter may be associated with a number of photon receiving events detected.
Abstract:
Methods and systems for reading out a pixel array are provided. An example system may be configured to represent the activity of at least two pixels in the array as at least two digital signals. Further, the example system may be configured to dynamically aggregate the at least two digital signals into one representative analog signal corresponding to the activity of the at least two pixels.
Abstract:
The present invention provides a measurement system of real-time spatially-resolved spectrum and time-resolved spectrum and a measurement module thereof. The measurement system includes an excitation light and a measurement module. The excitation light excites a fluorescent sample and the measurement module receives and analyzes fluorescence emitted by the fluorescent sample. The measurement module includes a single-photon linear scanner and a linear CCD spectrometer. The single-photon linear scanner selectively intercepts a light beam component of a multi-wavelength light beam that has a predetermined wavelength to generate a single-wavelength time-resolved signal, wherein the multi-wavelength light beam is generated by splitting the fluorescence. The linear CCD spectrometer receives the multi-wavelength light beam and generates a spatially-resolved full-spectrum fluorescence signal. With the implementation of the present invention, the spatially-resolved full-spectrum fluorescence signal and the single-wavelength time-resolved signal can be observed at the same time. Thus, the facility of a fluorescence spectrometer is improved.
Abstract:
A system includes a detector and a main processing unit having an event processing module. The detector includes pixels to detect an event corresponding to photon absorption. The event processing module is configured to read event information for each event detected by each pixel of the detector in order of receipt from the detector and to compare an energy level value in the event information for each event to a predetermined range of energy level values. An event is counted when the energy level value is within the predetermined range of energy level values. For each event having an energy level below the predetermined range, the energy level value for a next consecutive event in the received event information is read and a combined energy level value of the event and the next consecutive event is determined as well as the pixel locations of the event and the next consecutive event. The combined energy level is counted as a single event when the combined energy level value is within a predetermined range of energy level values and when the pixel location for the event is near a pixel location for the next consecutive event. At least one pixel location is assigned to the single event.
Abstract:
The invention relates to a single-photon counting imaging system and a single-photon counting imaging method. The system comprises a optical filter, a first lens, a digital micro-mirror device (DMD) control system, a second lens, a single-photon counter and a data processing unit, where the DMD together with the first lens and the second lens are used for converting two-dimensional image data into a one-dimensional sequence to complete sampling of measured signals; the ultra-weak light is filtered by the optical filter, after which the ultra-weak light image onto the DMD through the first lens, and the DMD control system controls the probability of the photons reflected to the second lens and the second lens controls the focusing of the photons; and the data processing unit together with the single-photon counter to complete sparse reconstruction, and the data processing unit converts the number of photons counted by the single-photon counter within a certain period of time into the probability of detected photon counts, as the measured value, and a photon density image is reconstructed by adopting an optimization algorithm based on the measurement matrix on the DMD and the measured value, thereby solving out the two-dimensional image.
Abstract:
The present invention relates to a single photon detector (SPD) at telecom wavelength of 1.55 μm based on InGaAs/InP avalanche photodiode (APD). In order to operate the SPD at a low after-pulse noise, a DC bias voltage lower than the breakdown voltage is applied to an InGaAs/InP APD. A bipolar rectangular gating signal is superimposed with the DC bias voltage and applied to the APD so as to exceed the breakdown voltage during the gate-on time of each period of the gate signal. The use of the bipolar rectangular gating signal enabling us to operate the APD well below the breakdown voltage during the gate-off time, thereby make the release of the trapped charge carriers faster and then reduces the after-pulse noise. As a result, it permits to increase the repetition rate of the SPD.
Abstract:
The present invention provides a photodetector for weak light that can prevent noise from impurities, prevent electrodes from disconnecting from the substrate, and can be easily cooled; the present invention further provides a photodetector for weak light that can count the number of photons; the present invention solves the above problems by using an ultraviolet light transparent substrate on the photodetector for weak light.