Abstract:
A multispectral imaging system and method in which the zero-mode channel is used to provide imaging of any of a variety of optical properties. In one example an imaging method includes spectrally dispersing received electromagnetic radiation into its spectral components with a dispersive element to produce spectrally dispersed electromagnetic radiation, transmitting the electromagnetic radiation through the dispersive element to produce non-dispersed electromagnetic radiation corresponding to a zero order diffraction mode of the dispersive element, imaging the non-dispersed electromagnetic radiation to produce a zero-mode image, and simultaneously imaging the spectrally dispersed electromagnetic radiation to produce a spectral image.
Abstract:
Methods and apparatus for combining or separating spectral components by means of a polychromat. A polychromat is employed to combine a plurality of beams, each derived from a separate source, into a single output beam, thereby providing for definition of one or more of the intensity, color, color uniformity, divergence angle, degree of collimation, polarization, focus, or beam waist of the output beam. The combination of sources and polychromat may serve as an enhanced-privacy display and to multiplex signals of multiple spectral components. In other embodiments of the invention, a polychromat serves to disperse spectral components for spectroscopic or de-multiplexing applications.
Abstract:
A spectra shaping apparatus for chirped pulse amplification (CPA): uses a spectrum decomposing system with CTSI construction, a spectrum synthesizing system with CTSI structure that is optically symmetrical to the decomposing structure, and a spectrum shaping system including an aperture and a planar reflector for spectrum shaping function design. The apparatus accomplishes the following functions: firstly decomposing the spectrum of a chirped temporal pulse laser to a spectral domain; then shaping the spectrum in the spectral domain; finally synthesizing un-shiftily this shaped spectrum in the spectral domain into a temporal chirped pulse with a designed shape. The apparatus has the feature of fabricating easy, compacting the structure, requiring less space, and cheap in cost etc., which it can be the different types of configuration for different circumstance application, which it can be not only utilized in a general laser spectrum shaping and spectrum modulation, but also can be utilized for a high energy and ultra-high peak-power laser system in chirped pulse amplification with a large caliber and with a chirped pulse bandwidth of a few nanometers.
Abstract:
The present invention is directed to a grating spectrometer system for polychromator spectrometer arrangements and monochromator spectrometer arrangements. The grating spectrometer system, according to the invention, comprises a light source for illuminating the sample to be analyzed, a diffraction grating, imaging optical elements, a detector arranged in the image plane, and a controlling and regulating unit. Individual light sources, preferably LEDs having different spectral characteristics, whose spectral range covers a plurality of diffraction orders in the image plane are used as light source. Only those LEDs which do not illuminate the same location of the individual detectors arranged in the image plane in any diffraction order are switched on individually or in groups by the controlling and regulating unit. The proposed solution is suitable for polychromator spectrometer arrangements and for monochromator spectrometer arrangements. The field of application is determined by the spectral sensitivity of the detector that is employed. By using a plurality of diffraction orders, the resolution can be increased with the detector size remaining the same, or the detector surface can be reduced while retaining the same imaging quality.
Abstract:
A novel dispersion optical system based on at least one grating is provided. The pitches of the grating are linearly modulated so that the incident light is dispersed into different monochromatic light at different diffraction angles. In such a system, an order sorting filter is not required to separate the light of a selected order from the rest of unwanted overlapped order.
Abstract:
A super high resolution optical resonator comprising a Fabry-Perot cavity and an intracavity diffraction grating which is operated in a non-zero diffraction order. The diffraction grating is of transmission or reflection type, blazed, single or multiple order. The resonant cavity can comprise two independent mirrors, multiple mirrors, or an optical resonator based on an optical fiber and one or more intracavity diffraction gratings operated in non-zero diffraction order inserted between the two or more mirrors or portions of the fiber, respectively. In a preferred embodiment, the diffraction grating is not in contact with one of the mirrors or the optical fiber. In another preferred embodiment, the diffraction grating is in contact with one of the mirrors or the optical fiber. In another preferred embodiment, the diffraction grating is part of one of the mirrors or the optical fiber. The width of the resonance is reduced by more than two orders of magnitude compared to prior art optical resonators and all diffraction orders except one of the diffraction grating are suppressed.
Abstract:
A solid monolithic spectrograph utilizes the Czerny-Turner geometric confration. It has a base constructed of BK7 optical glass to which all components are affixed with optical epoxy. The compact spectrograph operates in the visible spectrum in second order thereby permitting it to be smaller by a factor of two than if it operated in first order. The spectrograph is programmable and is capable of simultaneous multi-channel measurements of wavelengths and bandwidths of sources in the visible and near infrared spectral regions.
Abstract:
A hyperspectral imaging system, a monolithic Offner spectrometer, and two methods for manufacturing the monolithic Offner spectrometer are described herein. In one embodiment, the monolithic Offner spectrometer comprises a transmissive material which has: (1) an entrance surface which has an opaque material applied thereto, where the opaque material has a portion removed therefrom which forms a slit; (2) a first surface which has a first reflective coating applied thereto to form a first mirror; (3) a second surface which has a second reflective coating applied thereto to form a diffraction grating; (4) a third surface which has a third reflective coating applied thereto to form a second mirror; and (5) an exit surface.
Abstract:
A spectroscope comprises a package provided with a light entrance part, a plurality of lead pins penetrating through a support part opposing the light entrance part in the package, a light detection unit supported on the support part within the package, and a spectroscopic unit supported on the support part within the package so as to be arranged on the support part side of the light detection unit. The light detection unit has a light transmission part for transmitting therethrough light incident thereon from the light entrance part. The spectroscopic unit has a spectroscopic part for spectrally resolving the light transmitted through the light transmission part while reflecting the light to a light detection part. The lead pins are fitted into fitting parts provided with the light detection unit and electrically connected to the light detection part.
Abstract:
A spectra shaping apparatus for chirped pulse amplification(CPA) comprises a CTSI spectral decomposition system and a CTSI spectral synthesizing system being symmetrical, and a spectral modulating system composed of a diaphragm (10) and a plane spectra modulating reflector (5), wherein the CTSI spectral decomposition system totally expands a laser chirped pulse to a spectra plane, the spectral modulating system performs a spectra modulation on the image plane, and the CTSI spectral synthesizing system reverts the modulated spectra into the chirped pulse without distortion, thereby realizing spectra shaping. The apparatus has the feature of manufacturing easy, compacting structure, requiring less space, and cheap in cost etc., which can be different types of configuration for different circumstance application, and which can be utilized in a general laser spectrum shaping and spectrum modulation, especially for a high energy and ultra-high peak-power laser system with a large caliber and a broadband of pulse.