Abstract:
A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.
Abstract:
A spark spectroscopic high-pressure gas analyzer including a spark chamber, having a pair of electrodes, for receiving a sample of the pressurized gas to be analyzed. A voltage is provided across the electrodes for generating a spark in the pressurized gas sample. A selected wavelength band of radiation emitted from the spark discharge in the pressurized gas corresponding to a component to be sensed in the gas is detected. The intensity of the emission in the wavelength band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in the selected narrow wavelength band is employed to determine the proportion of the component in the gas.
Abstract:
Methods for measuring the sulfur content in a plurality of individual sulfur-containing fiber or article samples, comprising: a) contacting a plurality of samples with a solution comprising potassium hydroxide to convert the sulfur to potassium sulfate; b) concurrently and individually combusting the plurality of samples from step a) in a furnace at a temperature of greater than 650° C. to remove essentially all organic materials to produce a plurality of residues; c) dissolving each of the pluralities of residue in concentrated nitric acid to form individual residue solutions; and d) analyzing the individual residue solutions with Inductively Coupled Plasma (ICP) Emission Spectrometry to determine the sulfur content of each sample.
Abstract:
In one implementation, a spectral microscope may comprise a substrate with a planar lens, the planar lens including a phase profile including an axial focus and an oblique focus, a light source to excite a signal of a particle among a plurality of particles, and a detector to receive light generated from the light source from the axial focus of the planar lens and a spectral color component of the excited signal of the particle from the oblique focus of the planar lens.
Abstract:
A handheld LIBS analysis method features a moveable laser focusing lens, and a laser beam directed to a sample via the laser focusing lens. A first mirror includes an aperture for the laser beam. This mirror is oriented to re-direct plasma radiation for delivery to a detection fiber.